|

Programming - User Support

Applications

ISSN ¥ 0748-9331

Issue Number 52 September / October 1991 US$3.95

YASBEC
An Arbitary Waveform Generator
B.Y.O. Assembler
Assembly Language Programming

The NZCOM IOP

Servos and the F68HC11
Z-System Corner
Z-Best Software
Real Computing

PMATE/ZMATE Macros

A Home Heating & Lighting Controller
The CPU280

The Computer Corner

Now $4.” Stops The Clock
On Over

100 GEnie Services

For the first time ever, enjoy
unlimited non-prime time* usage of
many popular GEnieSM Service fea-
tures. For just $4.95 a month.
Choose from over 100 valuable serv-
ices including everything from elec-
tronic mail and stock closings to ex-
citing games and bulletin boards.
Nobody else gives you so much for
so little.

You can also enjoy access to a
wide variety of features like software
libraries, computer bulletin boards,
multi-player games, Newsbytes, and
the Computer Assisted Learning
Center (CALC) for just $6.00 per
non-prime hour for all baud rates
including 2400. That's less than
half of what some other services
charge. Plus with GEnie there’s no

TCJ readers are invited to join us in the CP/M
SIG on page 685 and the Forth Interest Group
SIG on page 710. Meet the authors and editors
of The Computer Journall Enter “M 710" to join
the FIG group and “M 685" to join the CP/M and

Z-System group.

We'll meet you there!

sign-up fee.

Now GEnie not only gives you
the information and fun you're look-
ing for. But the time to enjoy them,
too.

Follow these simple steps.

1. Set your modem for half duplex
(local echo), at 300, 1200 or 2400
baud.

2. Dial toll free 1-800-638-8369.
Upon connection, enter HHH.

3. At the U#=prompt, enter
XTX99486,GENIE then press RE-
TURN

4. Have a major credit card or your
checking account number ready.

For more information in the
U.S. or Canada, call us voice at
1-800-638-9636.

(" JUST $4.95)

Moneyback
Guarantee
Sign up now. If you're
not satisfied after using
GEnie for one month

Qe’ll refund your $4.95J

*Applies only in U.S. Mon.-Fri, 8PM-8AM local time and all day Sat., Sun., and select holidays. Prime time hourly rates $18 up to 2400 baud. Some festures subject to surcharge and may not be

avallable outside U.S. Prices and listed as of Oct.1, 1980 subject to ¢

hange. Telecommunications surcharges may apply. Guarantee limited to one per customer and applies only to first

mortth of use. GE Information Services, GEnle, 401 N. Washington Street, Rockville, MD 20850. ® 1881 General Electric Company.

The Computer Journal

Founder
Art Carlson

Editor/Publisher
Chris McEwen

Technical Consultant
William P. Woodall

Contributing Editors
Bill Kibler
Matt Mercaldo
Tim McDonough
Frank Sergeant
Clem Pepper
Richard Rodman
Jay Sage

The Computer Journal is pub-
lished six times a year by Socrates
Press, P.0. Box 12, S. Plainfield, NJ
07080. (908) 755-6186

Opinions expressed in The Com-
puter Journal are those of the re-
spective authors and do not neces-
sarily reflect those of the editorial
staff or publisher.

Entire contents copyright © 1991
by The Computer Journal and re-
spective authors. All rights reserved.
Reproduction in any form prohibited
without express written permission of
the publisher.

Subscription ratess Within US:
$18 one year (6 issues), $32 two
years (12 issues). Foreign (surface
rate): $24 one year, $44 two years.
Foreign (airmail): $38 one year, $72
two years. All funds must be in U.S.
dollars drawn on a U.S. bank.

Send subscription, renewals, ad-
dress changes, or advertising in-
quires to: The Computer Journal,
P.0. Box 12, S. Plainfield, NJ 07080,
telephone (908) 755-6186.

Registered Trademarks

It is easy to get in the habit of using company
trademarks as generic terms, but these trademarks are
the property of the respective companies. It is important
to acknowledge these trademarks as their property to
avoid their losing the rights and the term becoming pub-
fic property. The following frequertly used trademarks
are acknowledged, and we apologize for any we have
overlooked.

Apple It, i+, lic, lle, Lisa, Macintosh, DOS 3.3,
ProDos; Apple Computer Company. CP/M, DDT, ASM,
STAT, PIP; Digital Research. DateStamper, Back-
Grounder |, Dos Disk; Plu*Perfect Systems. Clipper,
Nantucket; Nantucket, Inc. dBase, dBASE II, dBASE Il
dBASE NI Plus, dBASE 1V; Ashton-Tate, inc. MBASIC,
MS-DOS, Windows, Word; MicroSoft. WordStar; Micro-
Pro international. 1BM-PC, XT, and AT, PC-DOS; I1BM
Corporation. 280, Z280; Zllog Corporation, Turbo Pas-
cal, Turbo C, Paradox; Boriand International. HD64180,
Hitachi America, Lid. SB180; Micromint, Inc.

Where these and other terms are used in The
Computer Joumal, they are acknowledged to be the
property of the respective companies even if not spe-
cifically acknowiedged in sach occurrence.

(o [100) TN 0 1=1=] O 2
Reader-to-Readerccooceecrirrencecerrrensesessneasnns erranes 2
YASBECooveeeeee O rerrreaseeserrees terressseeereensanren 3

The Hardware
By Paul Chidley.

An Arbitary Waveform Generator..........ccccvveeemrncenns 9
Using the Harris RTX2001A. Part One.

By Jan Hofland.

B.Y.O. Assembler......ccminininieeenseeni e, 17

Build Youur Own (Cross-) Assembiler...in Foith
By Brad Rodriguez.

Assembly Language Programmingcccccceeeuenn. 21
By A. E. Hawley.

The NZCOM IOP ...ttt can e, 25

A Background Clock Display
By Terry Hazen.

Servos and the FEBHC1Tcevreveieeireerereniecernceenes 31
By Matt Mercaldo.

Z-System COrNerccccceimviinnniesisnnsnnnas S .33
Programming for Compatibility: Z-System and CP/M
By Jay Sage.

Z-Best Softwareceeeeeeeervveeecnniinniiinnn, S 43
By Bill Tishey.

Real Computing................... veseesssnsssnnsssrnsssnnssssneneannass 49
X-10 Revisited, Mach, Minix, and Desqview/X
By Rick Rodman.

PMATE/ZMATE Macros ceecsereens rerreseaerenes cersnsanans 51
By Clif Kinne.

A Home Heating & Lighting Controller 53

Part 3, The Computer Hardware
By Jay Sage.

The CPU280ccocevvimmrnene ceessennnens T crsnnnns 61

A High-Performance Single-Board Computer
By Tilmann Reh.

The Computer COMMErccovnersencnrsensmnnsnssssssnnannns 64
By Bill Kibler.

Editor’s Desk

By Chris McEwen

In the last issue, | gave word on Lee Bradley’s Eight Bits
& Change. He had announced that he was ceasing publica-
tion. Whatever problems there were have been solved. I am
happy to report that EB&C is continuing. In fact, I have re-
ceived issues since then. Sorry, Lee.

We have a good bunch of articles in this issue. Paul
Chidley returns to give us an inside look at the YASBEC
hardware. Jan Hofland, a new author for us, gives us the first
part of building an “Arbitrary Waveform Generator,” while
Jay Sage continues his series on his custom designed home
controller with a discussion of the
hardware. Rounding out the hardware

times: we need a “Letters-to-the-Editor” column. I agree.
Well, what is a an editorial column without an editorial? If
you will, please join me for this month’s diatribe:

When is the Public Domain not in the Public Interest?
This may verge on heresy, coming from one who edits the
largest journal still supporting CP/M and runs a bulletin
board dedicated to supplying public domain software, but I
have a bone to pick. Stay with me just a bit.
See Editor, page 60

side: a brief on a hot new Z280 com-
puter that Jay found in use during his
trip to Germany last summer. Tilmann
Rey tells us about it.

For you software junkies, Brad Ro-

driguez tells us how to write an assem-
bler in Forth. Mind you, he isn't talking
about writing in assembler—this article
shows how to write the assembler it-
self. Great way to build your own cross
assembler!
. Al Hawley returns with his series
on Z80 assembly language program-
ming, while Terry Hazen picks up
where Lindsay Haisley left off regard-
ing IOPs. Add Matt Mercaldo’s series
on the F68HC11, Jay Sage’s discussion
of programming for compatibility, and
the others, and we have a great issue
for you!

By the way, a little “head’s up.” As
you know, TGJ is published after-
hours. Things will be a little rocky for
the next few months. I am going on a
string on business trips, back-to-back
from now through December. Hang in
with us, okay? In the meantime, issues
53 and possibly 54 may have to fall
back to the 48 page format.

Should mention that the response to
our reader survey has been outstand-
ing. The responses were all very
thought out and we will be using them
to guide TGJs future. I plan to sum-
marize after giving the stragglers a bit
more time. If you haven’t sent in your
survey, please do so.

One comment came up several

Reader-to-Reader

Recent GEnie messages, and issue
51, have given me much thought about
TCJ, its popularity, and its “niche” in
the marketplace.

What dol like about TCJ?

I've been getting TCJ since issue 43
or thereabouts. I originally subscribed
because of its Forth coverage—being a
Forth fanatic, I like to keep a complete
library. But TGJ quickly “grabbed me”
as much for its hardware-ish articles,
and its coverage of CP/M.

TCJ has always been a “read ASAP”
for me. | invariably start off by reading
the editorial, The Computer Corner
(which is usually relevant to my work),
and Real Computing (which usually
isn’t, but which I enjoy reading—it
helps me keep up with technology I
don’t normally use). Then, of course,
the articles. I generally skip the Z-Sys-
tem articles, since I don’t have Z-Sys-
tem and my CP/M systems have been
down for a while—but I enjoyed the
“history of Z-System” in the last issue,
and thanks to TCJI expect someday to
be a Z-system user.

You summarized it best in your new
back-cover ad, and in your latest edito-
rial: I like articles that give me useful
information, particularly on “how to
do it” with limited or no resources. TCJ
is a practical resource for me. I have al-

ready found many articles of profes-
sional value, and I expect to find many
more.

What of the future of TG

TCJ's target market seems to be se-
rious hobbyists, novice Forthers, expe-
rienced CP/M users, and embedded
systems developers—not that there’s
anything magical about embedded sys-
tems, except that they are the last bas-
tion of small-scale engineering. But
hobbyists at TCJ/s level are vanishing,
and CP/M, while not dead, is certainly
not burgeoning, either. Forthers and
ESPers, of course, have competing
journals.

In fact, I may be representative of
this market..which is a problem for
TCJ, since I'm a member of a dying
breed! Low-budget hackers, who
“cross-specialize” in both hardware
and software, who like to tinker and
know everything about how their com-
puters work—these are being replaced
by narrowly-focused specialists, “as-
sembly line” programmers who don't
know a parse tree from a pear tree, and
board- swappers who don’t know
which end of the chip is pin 1. Sadly,
that’s where the money is these days.

How can TCJ grow?

Tom Peters (an author I highly rec-

See Reader, page 47

The Computer Journal / #52

YASBEC

The Hardware

By Paul Chidley

Now that you were introduced to YASBEC (Yet Another
Single Board Eight-bit Computer) in TGJ 51, I will try to put
'some more meat on the plate. Some of the information pre-
sented here is redundant but necessary if you are meeting
Yas for the first time.

For several years I have been an avid 6502 enthusiast. It
started with my first computer, an OSI Superboard, back in
1979. (my wife bought it for me) 1IMHz 6502, 8K RAM, 4K
Microsoft BASIC-in-ROM and some truly limited I/O. Not to
mention the 300 baud Kansas City tape interface. Through
the years the system grew and I grew with it. I have become
a true expert on OSI computers and 0S65D. However OSI
made me a computer orphan in 1980 so recently I figured it
was time to broaden my horizons. This year, I upgraded to
CP/M. (I'll go to MesSyDOS when they work the bugs out).
Problem was, I didn't have any hardware that would run
CP/M. So like any good midnight hacker, I built some. Luck-
ily I had a neighbour, Wayne Hortensius, who for years has
been trying to convince me that I should switch to CP/M.
His knowledge of CP/M and the Z-System help guide me in
this project. The result of these efforts is YASBEC.

-Single Eurocard printed circuit board, double
sided, soldermask.

-Z180 CPU, PLCC package.

-Static RAM, 32K to 1MB capacity.

-32Kx8 (27C256) EPROM.

-Optional Real-time clock, with battery backup

(Dallas DS1216E).

-DD Floppy controller

-SCSI hard disk controller

-2 serial ports

-1 parallel printer port

-Buffered backplane connector

-Socketed for optional 9511A/8231A Arithmetic
Processing Unit

-RAM and I/0O addressing by PALs

-Requires +5VDC and +12VDC

The board was designed on a single card Eurocard
(100mm x 160mm) (approximately 4 x 6.5"). In other words,
small. A Z181 with tsop RAMs and a 4 layer board would
have resulted in a board half the size but at 5 times the price.
Given the constraints of double sided and several large DIPs
a large amount of circuitry was still squeezed onto the board,
mostly thanks to a large number of surface mount compo-
nents.

The Processor

The processor chosen was the Z180 or 64180Z. The Z80 is
too limited and the Z181 and Z280 too expensive at 2.5 times
the cost of a Z180. The Zilog Z180/Hitachi 641802 processing
unit contains a superset of Z80 instructions. There are 12 new
instructions and many of the Z80 instructions execute in
fewer clock cycles. The Z180 also contains a timing generator,
two 16 bit timers, a clocked serial 1/0O port, a two channel
DMA controller, two asynchronous serial ports and a mem-
ory management unit. There have been several articles in the
past dealing with this chip should you require more informa-
tion or programming details. For the YASBEC, a Z180 in a
PLCC package saves space and provides A19, not available
on the DIP package. This enables the Z180 to address IMB of
RAM without any external bank selects. The system is cur-
rently running with a clock speed of 9.216 MHz on the 10
MHz version Z180. Friends at Zilog have mentioned
12.5MHz, 16MHz, and even a 20MHz version some time
down the road. Even the 20MHz chip is supposed to be
available this year, but don’t hold your breath. The 20MHz
version would give us an 18.432 MHz system clock with
approximately 55ns access times, but it remains to be seen if
the YASBEC will be able to obtain these speeds reliably. The
double sided design can be susceptible to noise and other
problems at such speeds.

Memory
YASBEC's RAMs are static, provided by two 32 pin sock-

Paul Chidley is a senior technologist at NovAtel, an Alberta based cellular phone

ets. These sockets support 32Kx8,
128Kx8 or 512Kx8 RAMs in 600mil DIP

company. He's a neophyte ZCPR user, but has been active in homebrewed hardware
and software design for many years, primarily in the Ohio Scientific and 6502/816
area. Paul can be reached on GEnie (email address: P.CHIDLEY), by regular mail
at 162 Hunterhorn Drive NE, Calgary Alberta, Canada, T2K 6HS5, or by phone at
(403)274-8891 during reasonable MST hours.

Wayne Hortensius is, in real life, a software designer also, strangely enough, at
NovAtel. His involvement with computers began in 1977 when he wirewrapped his
first computer together around an 8080A. Wayne's been involved with ZCPR since
1984, on a variety of machines beginning with an Apple Il clone and ending up,
most recently with the Z180 YASBEC. Wayne can be reached by regular mail at
166 Hunterhorn Drive NE, Calgary Alberta, Canada, T2K 6H5.

The Computer Journal / #52

packages. Static memory was chosen
over dynamic for several reasons. Dy-
namic RAMs are cheaper but require
several support chips taking up pre-
cious board space, they are not as fast
as today'’s static, and they require CPU
time for a refresh cycle. With the Z180
running a 9.216 MHz, access times of
100ns allow zero wait states with stan-
dard ‘slow’ SRAMs. Two 128Kx8 RAM
chips provide a nice size for banked

3

CP/M at a moderate cost of around $30 each. disadvantage of the 1772 is that it does not support quad-density (ie.
The 128Kx8 chips are even available as fast as 1.44mb) drives or 8" drives.

25ns should you want to run the Z180 at
20MHZ with no wait states. It should however
be noted that the super fast 128K chips are $100
but 6 months ago they were $300. By the time a
20MHz version of the Z180 is available these
RAMs may be a more reasonable price. Using ; PIN Declarations
two 32kx8 chips requires a separate PAL to

Table 1.
A Description of the 128MEM1 pal. PAL16L8

map the RAM in a contiguous block. While the i;g ; ﬁ; mim : ;:;g
Z180's memory management unit can map PIN 3 a17 COMBINATORIAL 3 INPUT
physical memory to 64k of logical memory the g;: ; :i: m;mm ; m
DMA controller uses 20 bit physical addresses. PIN 6 RD mrmﬁumimm f INPUT
Therefor if you use DMA for I/0 in the BIOS PIN 7 WR COMBINATORIAL ; INPUT
the DMA must know the physical location of PIN 8 MREQ COMBINATORIAL ; INPUT
the CP/M memory making it important that :i: io g COMBINATORIAL i THRUT
the memory be in one block. PIN 11 IO AT COMBINATORIAL ; TNRUT
PIN 12 EPROMCS COMBINATORIAL ; OUTPUT
Monitor PIN 13 SRAM1CS COMBINATORIAL ; OUTPUT
The system includes a monitor ROM pro- :;ﬁ 1; mcs mim : m
gram available at power up if no drives and/or PIN 16 MEMWR COMBINATORIAL ; OUTPUT
software are found or if a key is pressed before PIN 17 IORD COMBINATORTAL i OUTPUT
disk bootup. The ROM is a 27C256 providing :;: 1: ;SZRDIR m:m i ouTPUT
32Kx8 of space. The first version of the monitor PIN 20 vee ;
occupied 4K. There is room for expansion. Sev-
eral people have asked why such a big EPROM i Boolean Equation Segment ——-
for so little code. This however is a common EQUATTONS
problem today especially in embedded control- JEPROMCS = /MREQ * /A19 * /A18 * /Al7 * /A1§ * /A1S
ler applications. The answer; no one makes /SRAMICS = /Al9 * /Al8 * Al7
small, slow EPROMs anymore. A 27C256 is /SRAMCS = /R19 * AlS * /AL7

/MEMRD = /RD * /MREQ
cheaper than a 27C64. Of course with the /MEMWR = /WR * /MREQ

MMU (memory management unit) in the Z180 /IORD = /RD * /IORQ

this is really a non-issue. Once we boot we gg;mn;a ﬁw? *Ago?o/mo * /RD + IO_A7 * /IORQ * /RD
swap out the EPROM, anyway. Using the Dal- - ¢ = ora '
las DS1216E SmartWatch provides a battery ;
backed-up clock for the system. The Smart-

JEPROMCS = $0:0000 - $0:7FFF 32k x 8 Eprom (27C256)
Wat.ch also serves as a socket for the EPROM. /SRAMICS = $2:0000 - $3:FFFF 128k x 8 Static Ram
While the optional SmartWatch may seem /SRAM2CS = $4:0000 - §5:FFFF 128k x 8 Static Ram
pricey at $25, anyone that has to enter the date /BUS_DIR = Reverse data bus buffer for a

memory read from $8:0000 ~ §FsFFFP

and time more than twice will soon want one. or an 1/o zesd frem $E0 - §FP

Floppy Disk $F:FFFF

The floppy disk schematic is shown in figure

1. The controller is a Western Digital WD-1772-
02 also available from VTI as the VL-1772-02.
The 1772 (U14) includes everything needed for
floppy control in a 28 pin DIP except buffers
and an 8MHz clock. The 8MHz clock comes
from the oscillator module (U24). The 4MHz
and 2MHz signals from U23 are used else-
where by the APU (arithmetic processing unit)
and not by the floppy circuit. A 74AC04 (U22)
provides the buffering while a 74AC00 (U18)
gates motor_on with the drive select lines. The
four drive select lines come from the control
register (U20) in figure 2. Note that _FRESET
and _DDEN also come from the control regis-
ter. _DDEN selects single or double density
while FRESET gives us software control of the
1772 reset line. This allows the software to $110000
force a reset should the chip become hung
waiting for a condition too long. e.g. timeout $0:7FFF | Monitor Rom
waiting for a floppy that isn’t there. The major $0:0000 |_32k_x_8_ 27C256

$6:0000

$5:0000
Statiec Ram
128K x 8
TC551001PL-100
$4:0000

$3:0000
Static Ram
128K x 8
TC551001PL~100
$2:0000

|
|
|
I
|
I
I
I
I
I
I
!
I
I
I
I
I
I
|
I
I
I
I
I
|
I
_|

4 The Computer Journal / #52

scsi

A DP5380V or DP8490V (U21) SCSI controller is available
on the board for hard disks as shown in figure 3. The hard-
ware is capable of supporting up to 7 devices on this one bus.
For those of you not familiar with SCSI (shame on you) all
you need is a SCSI drive such as an ST157N and a 50 pin
ribbon cable and you have a hard disk drive on your system.
Of course you still need some software to talk to it. RS1, RS2

Table 2.

A Description of the YASIO-1 pal. PAL16L8

H PIN Declarations -cecceccewawa
PIN 1 A7 COMBINATORIAL ; INPUT
PIN 2 A6 COMBINATORIAL ; INPUT
PIN 3 AS COMBINATORIAL ; INPUT
‘PIN 4 M COMBINATORIAL ; INPUT
PIN § A3 COMBINATORIAL ; INPUT
PIN 6 A2 COMBINATORIAL ; INPUT
PIN 7 Al COMBINATORIAL ; INPUT
PIN 8 A0 COMBINATORIAL ; INPUT
PIN 9 RD COMBINATORIAL ; INPUT
PIN 10 GND ; INPUT
PIN 11 WR COMBINATORIAL ; INPUT
PIN 12 IO_A7 COMBINATORIAL ; OUTPUT
PIN 123 IORQ COMBINATORIAL ; INPUT
PIN 14 FPPCS COMBINATORIAL ; OUTPUT
PIN 15 NCRCS COMBINATORIAL ; OUTPUT
PIN 16 NCRDACK COMBINATORIAL ; OUTPUT
PIN 17 FDCCS COMBINATORIAL ; OUTPUT
PIN 18 PRINTERSTROBE COMBINATORIAL ; OUTPUT
PIN 19 CREQCS COMBINATORIAL ; OUTPUT
PIN 20 vee 3 INPUT
H Boolean Equation Segment mwe=we=
BQUATIONS

JCREQCS = /TORQ * /WR * /A7 * A6 * /A5 * /A4 * /A3 * /A2 * /A1 * /RO
/PRINTERSTROBE = /IORQ * /WR * /A7 * A6 * /A5 */A4 */A3+/A2 + Al
/¥PPCS = /AT * A6 * /AS * Ad * /A3 * /A2 * /Al

/NCRCS = /IORQ * /AT * A6 * /AS * Ad *+ A3

/NCROACK = /TORQ * /AT * A6 * A5 * /Ad * /A3 * /A2 * /AL * /A0
/¥DCCS = /IORQ * /WR * /A7 ¥ A6 * AS + /A4 * A3

, + /IORQ * /RD * /AT * A6 * A5 * /A4 * A2
/1I0_A7 = /A7

’
$00 - $3F // %180 Internal I/O
/CREQCS = $40 // control Register (74hc273)
/PRINTERSTROBE = $42 - $43 // Printer Strobe
/PPPCS = $50 - $51 // Floating Point Processor
/NCRC8 = $58 - §5F // SCSI
/NCRDACK = $60 // SCSI DACK
. /PDCCS = §68 - $6F // Floppy Disk Controller
$70 - $7F // Not Used
$80 - $FF // Off board I/0

SFF
| off board 1/0 |
§80 | |
| Not Used |
$6r | |
| Ploppy Controller |
568 | |
| scsI DACK |
$60 | |
| sCcSI Controller |
$58 | |
| Arith. Math. Proc |
$50 | |
| Printer Strobe |
$42 | |
| Control Register |
$40 |]
| 3180 Internal 1/0 |
$00 | |

The Computer Journal / #52

and RS3 provide the standard termination required at each
end of a SCSI bus. Another set must be provided on the other
‘end’ of the bus (i.e. the last drive in the chain). The SCSI unit
number of the YASBEC is coded in software to seven, pro-
viding jumpers to make this address selectable was not as
important as saving board space. The only reason anyone
would need a different unit number would be to put two (or
more) YASBECs on the same SCSI cable and should anyone
really want to do that a simple change to the BIOS can give
one of the boards a new address. Interfacing to the chip is
done with NCRCS, _IORD, _IOWR and _RESET. The other
four lines provide feedback for interrupts and DMA control.
The actual controller is built into the drive, the 5380 is actu-
ally just a fancy parallel port to talk to the smarts on the drive
via the SCSI bus. The SCSI transfer protocol is mostly
handled in software. The 5380 is capable of polled 1/0,
pseudo DMA and full DMA data transfers. It is common to
find 20 MB SCSI drives for $200 in Computer Shopper and
other such magazines. At those prices it is hardly worth run-
ning an old flea market special with half its heads missing,
even if it was $20. (hi, Hal!)

Fast Math

YASBEC is a blend of very new parts and some very old.
The very old part is the AMD 9511A /Intel 8231A Arithmetic
Processing Unit. While this chip has been around since the
early days of computers it is still in current data books. Why?
No one has ever built anything to replace it. Current co-
processors are just that, “co”-processors. They are designed
to work with their mate but not any others. The APU
(9511A/8231A) on the other hand is easily interfaced with
most common 8 bit processors. It features fixed point single
and double precision (16/32 bit), floating point precision (32
bit), add, subtract, multiply, divide, conversions and floating
point trigonometric, inverse trigonometric, square roots,
logarithms and stack oriented operand storage. The down
side is that it runs very hot, and costs $150! Almost as much
as the rest of the board. So why was one included in the
design? For fast math and Wayne had one. The APU is of
course optional, YASBEC will do just nicely without one in-
stalled. But if you need to do sin(x) a thousand times and
money is no object then there is a socket for an APU. Wayne
has an astronomy program (sky32) that number crunches
then plots a graphics display four times faster with the APU
than without. If nothing else it might be worth the money
just to show you neighbour how fast your homebrew can
crunch numbers compared to his PC.

Address PALs

Memory and address decoding is done with two 16L8
PALs, see figure 2. The 16L8 is easy to program and its age
makes the older bipolar versions available for as little as $2
with 15ns delays. Should it be needed the 16L8 (16V8) is also
available as fast as 5ns but at a price. As you can see, PALs
make the addressing schematic simple, but to see what is
going on you have to know what the PAL does. Table 1 is a
listing of the PAL equations and memory map. Given the pin
definitions and the PAL equations you can see how this PAL
decodes memory to fit the desired memory map. Having all
the memory address decoding in one PAL improves the ac-
cess time needed to talk to the RAM. A 15ns PAL with 100ns
RAM legally meets the worst case op-code fetch of 118ns at
9,216 MHz. Where the RAM is located in the IMB map was

0sC
LE vee ——>2HHz
7/GND OUT
__[_ 8MHz
- u24
4MHz
{>8MH 2
DATA_BUS(0:7) vee "
U2z 74ACT04
. 12 g"mﬂzvcc-i—]_ 31051[>-LD>0—L—932 S1DE
H 805 oLt 5D>¢5 $24 WRITE_GATE
ADDR_BUS(0119) : g Wpj-R2 1'[)>c'° 322 WRITE_DATA Js
2
: 1 noj-22 ! [:tx> 2 516 MOTOR_ON 1 o
_FDCCS cs DIRCHZ *3D>c'2 $18 DIR_SEL § oKD
@ 1 STEPHS 3D>c 4 28 STEP 9 GND
z % > 2 SPEED {3 ohb
N R0l 15 GND
ul (¥ ! 38 RERD_DATR 17 GND
_FRESET> 2TIhR b] 7 M 19 GND
_DDENC> £ EEEEN _RPRT{2S 8 INDEX 21 oNo
28]INTRO GNBH“ >26 TRACK_@ §§/ g:g
Ut . 28 WRITE_PROTECT 5? gxg
>34 READY 33 GNO
U8 74ACTE0 S 4 NC
s 5 vee =
i:;j[::}:>>§————> 6 SEL4 .
BS 4o H
9 JS
::J::I>}L_—9l4 S£L3 RS
DS3[>—r
» Js
, 12 SEL2
ps2f>——
12 Js
D——'——_{]}L_) s
DS1
Z180_PLCC
3 19 '
18
i Fig. 2
'* ADOR_BUSI@119)
\,
1528 {f
14 13
13 12
1254 ycc
ik
9
ag H " PAL16LS
-t vCe
o :g_.nig -
anzz A q sh—4 g/FE’3 ~SRATIES
A6 N /EBIAHL ZSRANZCS
As{ze g, Q/ERlae ZHEMRD
A4 JEBiSH THENKR
A3 2" g Q/EBt711 16RO
HITW & 19, o7fgie -ioR0
A H 111 19 Soa R IR
Ao 1| OND
.
DZ g uig
S =
1 s
23 H vee
8 PAL16L8
E a1 vee J
sR—415 01
B (ST g
- i\ L R
H _% 85%{9:3 :Ncnggcx
111 18H ZPRINTERSTROBE
e | CREGCS
= U28
D51
082
083
054
SIDE1
0BEN
CFRESET

_RESET>

The Computer Journal / #52

and still is an issue. In the PAL currently being used the
memory starts at $2:0000 leaving a hole between it and the
EPROM. Not a big deal, unless an external memory board is
used and people want the full IMB (less 32K EPROM) for
RAM. The joys of a PAL, should it come to that, is we just
burn a new one. The current memory PAL (U10) also con-
trols the data bus buffer direction. To do this it needs to
know what RAM is on the YASBEC and what is external. For
now we just chose $8:0000 and up as external but this too can
change. The 1/0 PAL can also reverse the external data bus
buffer. The I/O PAL is set up for the Z180 internal I/O from
$00-$3F, the YASBEC on-board 1/0 from $40-$7F, and off-
board I/0 from $80-$FF. The I/O PAL contents are listed in
Table 2.

Serial Ports

YASBEC is a serial stand-alone system. To get a working
system you need to talk to the board. In other words, it is a
complete stand-alone system but you need a dumb serial
terminal to talk to it. An AT works quite nicely. In fact, many
CP/Mers I have talked to say that a dumb terminal is a very
suitable application for an AT. A MAX239 provides TTL to
RS-232 conversion for all data and signal lines available from
the Z180’s serial ports as illustrated in figure 4. The MAX239
is from the same family as Maxim’s MAX232 but with 3
transmit and 5 receive lines instead of 2 and 2. Unlike the
MAX232 which only requires +5V the MAX239 requires +5V
and +12V. The +12V should be readily available since it is
also needed for any disk drives. The console port has a single
flow control line labeled RTS coming from the terminal

(DCE). This definition was taken from the Z180 and is in-
tended as a hardware handshaking line. The problem is that
most terminals either don’t have hardware handshaking or
use some other pin for this other than RTS. How you would
actually use this line, if at all, depends on your terminal. The
modem port has three control lines, DSR, DTR and DCD. The
only gotch-ya here is that DCD actually disables the serial
port hardware when not true. So unless you have a modem
with a true R5232 conversation mode you will need to set
jumpers U29 and U30. Some modems have DCD true while
on-hook in conversation mode, they then set it false after a
dial command after which it represents the state of the car-
rier. With such a modem you may hook DCD up as origi-
nally intended. U30 allows you to use DSR instead while U29
allows you to short _DCD to ground making it always true.
Both ports do an adequate job despite the limitations pre-
sented by the Z180’s architecture. Note the reset circuit in
figure 4 has three inputs. C3 and R4 provide a power up
reset, shorting $2 provides a reset as well as shorting pins 9
and 10 on J3 the console serial port.

Printer Port

The Centronics compatible parallel printer port is your
standard eight bit output port with hardware handshaking as
shown in figure 5. Writing to _printerstrobe+1 latches the
data in U16, sets _strobe low via address line 0 and U15, and
clears _int2 if set. Writing to _printerstrobe sets _strobe high,
the printer acknowledges that the data was received with
_ack through U15 which sets _int2 low until the next _prin-
terstrobe.

See YASBEC, page 42
vee !
DATA_BUS(817)0> -~ Fi Qe 3
DPB49BY s1 us2
ADDR_BUS(0:19)> o o8 o ¢ >26 TRMPWR
o 2 _DBe
205 :Bgl Ea ‘85%
é :EE% — %8 _DBS
Jpe _084 $16 0Bt
87 DB 12 2086
0P Z086 14 DB
087 16 7087
2] Zo8ri 18 —0BP
81
NLL2Z 32 _RAIN
£ :ggvlﬁ N gas “BsY
NCRCS Cs CACKHe - 38 ZACK
T-IoRD iR RST}Le . 49 RST
NS Gt 42 _MSGC
-ReseT RESET :gEL" Sas TSEL
By NT
BORQ co) 346 _CD
2 S48 _REQ
_NCRDACK[> EgéQ —‘ﬁg,, 350 10
_TENDL (> £ ND
I D2
Uzl f~) o - [N [- k& |in Gl - o~ Lo =z b o) * jou
19 1 d -
74HC1 4 = i
_INTY g 8 g =
uts & o o~
74HC14 ° e S N
_DREQ!Y 8
RS3 RS2 RS1
u32
uaz us2 528 NE
1 GND 27 OND
3 OND 29 GND 26 GND
5 OND 31 GND
7 OND 33 GND 22 OND
g GND 35 GND
11 GND 37 gND 24 OND
13 GND 33 GND
15 GND 41 GND 28 GND
17 OND 43 OND
19 GND 45 GND 30 GND
21 ONO 47 GND
23 GND 48 GND 34 CND
The Computer Journal / #52 7

MODEM(DTE } vee
- 4
shia]d’_’(—‘—]
a0 2o cas 18. 4320z >—+ }_j
ls, | 1our —l ot -
RxD +)
rrs! 6! ‘”‘j_ R2 470K
lg, | =
CTs " v 12V yeC . 7180_PLLC
DSR' B¢ + 3
oro ! 7] Q‘: - < T A1gjs
1ep | 18 1y 557 AIg[e
peo' o ! o S g P L2 vesy a1 7z
lo | 8 Jv- > C+8 CEXTAL R16R!
DTR! | mAxz 39 C-
w12y 10 IT10UT T1IN2 = A1slze
Lo 201120UT T2 INPRL 1 a1 442
L 1313001 T3IN[LE I 43R xR a13jze
J2 = L { L} g%t AL
1IN RIQUTHE 3 7 0o 1112
LRZIN RZOUT] 46CCTSE f]ps
ko s
TERMINAL(DCE) SIN R5001 R XA i
= HTXA1
shlaldl [BNC o _ENY g C151-RXS aglf
<D ¢ org - Q:QL ét;xs giﬁg
Rudr! 2 ul ves Tl Ay
O 12y - - azte
RTS| | T i ?’*'fﬂb S(ﬁi
crs'® U INTT i
o I W INTQ
< SOTGREQI D7
6RO T FronERggcke B
|e< I £ BUSACK B‘é%
lg, | hPEL]
GRD “¢—d CR! utg 8 RESET Dij2e
TN 74HC14 A HAL T nap?
RST_IN 5 WARIT
JaL-- - TEND pH jes
= TEND: _kje?
T THR|ES
ThHyfes
4 4
_MRE (82
Z1oRalE2
ZRFSHE!

vee
DATA_BUS(017) Re4 3
()
ADDR_BUS(Q: 191~ £ PRINTER
R TANCIT4 r"n_STRUBE
2 % L —‘-—)2|
H 3 84 Ly3lpg
5 DS Q5 bl
6 2406 ol RN
? %g I8 g‘ ‘ lel
LLCLKS
_PRINTERSTROBE(C> | : ;e:
| ’luz
| eI
| Slua
510
L iip,
e | 12[
L yalpgs
el
: /lles
_RESETC> T ’sl
17 07
I el
LS
| 23‘
[T
L J4
_INT2<

The Computer Journal / #52

An Arbitrary Waveform Generator
Using the Harris RTX2001A

By Jan Hofland

Introduction

Vibration control systems for mechanical structural testing
generally require a programmable signal source. This source
is used to control the system stimulus during test, which is
typically a hydraulic shaker table. The usual test setup con-
sists of a stimulus and several response measurement chan-
nels. The mechanical motion of the unit under test is meas-
ured with many accelerometers attached to it. The output
from the accelerometers goes to an analog to digital converter
and then through digital signal processing for extraction of
the pertinent data to characterize the mechanical modes of
vibration and sensitivities to various stimulii. An important
attribute of the signal source used in this type of testing is the
ability to be programmed in real time during the testing so
that the stimulus can be adapted to the measured responses.

The purpose of this design project is to demonstrate the
capability of a programmable waveform generator designed
around the Harris RTX2001A microprocessor, a Digital-to-
Analog Converter (DAC), and a programmable lowpass fil-
ter. The RTX2001A is used for controlling the DAC sample
rate (when the next output value is put into the DAC), for
inputting the data to be output, for putting that data to be
output into one of two data queues, for controlling the data
queues and extracting data from the queues to be output to
the DAC, and for controlling the output lowpass filter cutoff.
It is also used to generate sinewave data of any frequency up
to 40 Khz.

The two data queues are implemented in software.
They're controlled with a write pointer for inserting values, a
read pointer for extracting values, an end pointer for deter-
mining when to loop back to the start of the queue, and a
count variable to keep track of the number of values in the
queue. They can be used as a circular buffer where some
periodic waveform is loaded into the buffer and then the
data is output from the buffer repeatedly to generate a con-
tinuous output. The buffers can be configured to operate ina
ping pong fashion, where data is extracted from one queue
until it is empty and then it automatically switches to the
other queue and extracts data from it until it empties, and
then it stops. Another operating mode is to extract data from
one buffer until it is empty:.

Sinewave outputs are generated by using a fixed output
sample rate, a phase accumulator, table lookup of successive

values, and interpolation between values in the table. There
are two basic ways of generating sine values of varying fre-
quency. One method uses a fixed number of points per cycle
of the sinewave and varies the rate at which these samples
are output. The other method is to fix the output sample rate
and to vary the number of points output per sinewave cycle.
In other words, vary the phase increment between successive
outputs. This is the method of sinewave generation used
here. There is an 800 point sine table representing one full
cycle of the sinewave. The phase accumulator is incremented
by a value dependent on output frequency each time a value
is output to the DAC to determine the next value to be out-
put. There are two sinewave output modes, one optimized
for speed and one optimized for accuracy and versatility. In
the high speed mode, a fixed amplitude sinewave is output
using values directly from the sinewave table. In the ‘accus-
ine’ mode there is a second phase accumulator for keeping
track of the intermediate phase between table points. The
value output is calculated using the sum of two angles trigo-
nometric relationships. This mode also allows amplitude
scaling and D.C. offset adjustment.

Hardware Overview
The block diagram for the hardware added to the Harris
RTX2001A Evaluation Board is shown as Figure 1. It consists
of the following blocks:

+ An additional 8K x 16 of RAM. Implemented with
two CY7C185 static RAMs, 45 ns access time.

+ Memory Address Decoder. Implemented in part
of a GAL 26CV12, 15 ns device. Maps the added RAM
into memory space 05000-08FFE, hex.

* Input FIFO, 2K x 16. Implemented with two
CY7C429 FIFOs, 40 ns access time. Used for command
and data input.

« FIFO Read/Write Control. Interlocks the reads
and writes with their respective empty and full flags.
Provides write pulsewidth control and interfaces to the
ASIC bus for reading the FIFO. Implemented in part of
a GAL 22CV10, 15 ns device.

* Filter Clock Programmable Counter. Used to con-
trol the toggle rate of the switched capacitor lowpass
filter for wide bandwidths. Implemented using a
74F1779 counter and 74HC273 register.

« Filter Clock Control. Controls

Jan Hofland is employed with Hewlett Packard as a hardware design engineer,
working primarily on 68K based systems. His personal interests include woodwork-
ing, and playing with electronics for over 20 years. His current favorite system is
the F68HC11 from New Micros. Jan can be contacted at 2419 123rd Ave. SE,
Everett WA 98205 or by telephone (206) 334-0738 during the evenings.

The Computer Journal / #52

filter counter reload, counter enable,
and writing to the counter reload
register. Interfaces to the ASIC bus.
Implemented with part of the GAL
26CV12 device.

» DAC Data Shift Register. Pro-

€ 30 1 333ys

@661 ‘22 t4dy

@62¢ A43ua 3sajuod
vcu_wox cmh

1082X1y SI¥dUH ONISN

X1340S yse|syoeq yiim
pajouap s|euliis moy aat}oe

.30
JOLUY3INID WHOJ3AUM AdudLIdYY N
-0 DL
WO 9148 ONNOYY O 135348
- —0 \13534
91
,M 2 sl O [8:51)09
o | H13d szt sl
b T ISR €100 a B f——r a1 po
[% 1w & te1} (3109 * ® St 320 2 x4 = 6
\] e
(810K 101 o J” [21 3% ”mwmw ” ” s.__ o s ” Japiatg “w“ O g o8 DL
T130W 21 wi——\J tiw T s 43013 LA P
I3 (€109 a o] L FELTNE 9 Sy N\
t210m w1 ¥\ el {2109 = L £0 L2 P : / re g s —\] (10
LEIOW i Mo\ eI (1309 n w 0 L2 NS oo L 12 "I N CE1IaM
CPIOH =1 YN e tel0s ") R o = (20m § ol” e N o
[SIOM 1 wre—\{ taw =i : ex 9T T (eI |/ ™ %] (630K
(3104 o1 Wi\ 9w BV] o = 18I |/ w1® I \] (a0
t2aM Wi\ [NS g A < (m l wl” %= \] (5304
anw ¥ [rIo T Rl (31] xw (10w
i KT N A w1 Y 2 1€ ~N
»] [E3 \ (217 o I (2m 1/ 1™ % [13a
..T..ltl/_mzaowU 21 " L Ast GRS 21% % Tiom
= |t P T T S I M
- S e e LT NLEDIW 1008 vz | - [e Man
i) ol € N [PIIWM Sin 22 12 511
™ - 21 u L]
D \M/ 34 san A w1 « el e [STIWW M3 B2 o o 51
- I d =Rl o IEERN S 1B L /" at] (611w
i T pESTE) = T D ICTHN 1 226 (81w L9 | ™ # g\ 12w
o o L8 N w| a5 N\ (8136 191w 1/ “” e (s1)w
3 N) NESHE] (6110 DWW 5 1 [E1)oM
{B3OH H .HJ. mmﬂ s 2> ") w5 s L
[630M - :JN (Bl yorud 2™ 2 NV teniw L1 417 (61
[013aK N ot oD 2| a J LT 1t S\l taw
[H10K w1 Mo\ (B mvwo 2™ "It N\ (2% w1 e\l (s
2130 w1 » [8IM et m 1299 z 1
y N END R 4 T 2 N 17 w157 7] (I
TETIOR - o\ [aw o™ 1w (21 (1w
Cv110K | an wheE— [93 a0 o <] : D1
LS1ION o\ [SIW —O\0I3
JW% » o $21 1]
2w T (€I ¥Dd
"l ¥ 21 W —~—O WD
4B e o2 /
[1:510M) p.
CHI -
|0J3U03 Y20 43|t 4 pue N\ O {@:21¥

9p033] SSIJppy AJoway

The Computer Journal / #52

10

vides parallel to serial data conversion for the output
DAC. Data is input from the ASIC bus. Implemented
using two 74HC299 devices.

* Serial DAC Data Control. Controls data loading
and shifting and when data is latched into the DAC.
Implemented using part of the GAL 22CV10.

s Serial Input DAC. An 18 bit DAC. This device isa
Burr-Brown PCM61P.

* Switched Capacitor Lowpass Filter. Used for out-
put waveform reconstruction. Tuned to a particular
cutoff by varying the clock frequency. This device is a
Linear Technology LTC1064-1, 8 pole, elliptic function
lowpass filter.

* Output Buffer. Unity gain. Implemented using an
LMé6321.

The schematics are included as Figure 2. The ABEL source
code for the GAL 26CV12, U3, and GAL 22CV10, U8, will be
printed in a future issue of TCJ.

Hardware Detailed Description

External Input Port

Commands and data are input to the Waveform Genera-
tor via the FIFO, comprised of two Cypress Semiconductor
CY7C429 devices, U9 and U10. The FIFO provides a 16 bit
parallel interface by 2048 words deep. Inputs are pulled up

to +5V via 4.7K resistors. Data is read from the FIFO by the
RTX2001 via the ASIC bus. The FIFO includes empty and full
flag outputs.

FIFO reads and writes are controlled by circuitry in the
22CV10 PLD, U8. Data is read from the ASIC bus at address
19 hex. FIFORD is asserted active low if the ASIC bus ad-
dress GA[2:0)=1, GIO is asserted, GR/W is high, TCLK is
low and the FIFOMT flag is not asserted. Once asserted, FI-
FORD stays asserted until TCLK goes high again. This is to
prevent short cycling when reading the last valid value from
the FIFO and the FIFOMT flag is asserted. The PLD used is a
15 ns device, so FIFORD is asserted 15 ns after TCLK goes
low, worst case. The CY7C429 FIFO has a 40 ns access time,
worst case, so the FIFO data will be valid on the ASIC bus at
least 7 ns before cycle completion. In actual operation, typical
access times of less than 30 ns are common. The reason for
using TCLK instead of PCLK is that TCLK is being used in
the PLD for other reasons and that for ASIC bus operations,
TCLK and PCLK have the same timings.

FIFO write operations are controlled by the active low
STROBE input and a flip-flop in PLD U8. When STROBE is
sensed active low by U8 and if the FIFOFUL flag is not as-
serted, then U8 sets FIFOWR active low. When the external
interface senses that FIFOWR is active, it then may release
STROBE. The data must be held valid by the external inter-
face until FIFOWR is deasserted. When U8 senses that

STROBE is deasserted, it deasserts Fl-

FOWRand strobes the data into the
FIFO. This interlock protocol ensures
that only one value is written into the
FIFO for each STROBE pulse and that
the write pulsewidths are sufficient for
the FIFO. The maximum transfer rate
into the FIFO is limited to one-half the
system clock rate.

Digital to Analog Converter

The DAC chosen for this application
is a Burr-Brown PCM61P, U14. It was
chosen primarily for its low cost, at 16
bit capability, and compact size.

The PCM61P is a serial input 18 bit
device and includes an integral ampli-
fier for current-to-voltage output con-
version. The only digital inputs re-

Listing 1.

The following 16 specific commands have been implemented:

command description

0 NorP no operation

1 fastSine set up to operate in fast sine mode. The next value
input is the frequency.

2 accuSine set up to operate in the accurate sine mode. The next
value input is the frequency.

3 setAmpl set output amplitude, in millivolts, for accurate sine
output mode. The value following this command is used
as the output amplitude. This value will be truncated
to a multiple of 50 mV.

4 buflLoop0 set up to output from buffer 0 in circular buffer mode

5 bufLoopl set up to output from buffer 1 in circular buffer mode

6 pingPong0 set up to output in ping pong mode starting with
buffer 0

7 pingPongl set up to output in ping pong mode starting with
buffer 1

8 bufOut0 set up to output from buffer 0 until it is empty

9 bufoutl set up to output from buffer 1 until it is empty

10 1ldBbuf used to select a buffer and load it with data values.
The next parameter must be the number of values to be
loaded, up to 2048, and the msb set if it is for
buffer 1. Then the data values are input in sequence.

11 setOffset set the offset to be subtracted from the sinewave
value in accurate sinewave mode, in 100’'s of microvolts
The next value following this command is the offset.

12 setPilt used to set the filter cutoff point. The next value
input is used for the filter cutoff, range 1 to 40000
Hz.

13 getPericd used to input the desired sample rate. The next
value input is used for the timer O period. If in
either sinewave operating mode, a check is performed
to readjust the phase increment to be consistent with
this period and the output frequency.

14 stop disable timer 0 interrupt to stop outputting points

15 start snable the timer 0 interrupts to start outputting data
and then go into a loop to repeatedly check the stale
data flag in register RX and update the value in
scratchpad RH if the stale data flag is set. Continue
this loop until the timer 0 interrupt is masked.

The execution vectors for each of the 16 commands are-contained in a table

The Computer Journal / #52

quired are the serial data input, a clock,
and a latch enable signal. It accepts
data most significant bit first, binary
2's complement coded. Data is clocked
into the device on the rising edge of the
clock. The maximum clock rate is 16.9
MHz, well beyond our 8 MHz system
clock rate. The latch enable signal actu-
ally controls which information is
transferred to the digital-to-analog cir-
cuitry from the input interface in the
part. The input clock and the serial
data stream may be thought of as a
continuous input. The last 18 bits input
before the latch enable makes a high-
to-low transition are transferred to the
DAC conversion circuitry in the
PCM61P. The generation of latch en-

1"

€ 40 2 393YS | ooy Asjus 3sajuod . -0 y1v3 35
® ue
Be61 ‘22 11e% putlaon “eI PO
ASH =
199¢X1d SIN¥UH ONISA alelil bl bl T
HOLUYANTD WYO3AUN AdudLIENY \ ”L |MM a”
z
|—a
] [
¥lvd 4% P 2], o2
CNYOXO T viad NI 82 |
UOISJI3AUOY) RIY(] il puewso) ,R3R(|RUIAIX] mmAC}u] — Lﬂ. NI sz |
{1495 / 13[1k4Rd ONIOW 0414 aIOR2 U2 NN SR SEE N2l [0
T TR 1 A -t | < o
© = . ek x = Ags £l L
a Lla atl] a [k
61 T3 N | * =
e T b =5 etfefnfelalsiviea) 5t 51)
-2l)= N % sh_¢] | 1/,
®] ' il 2t !
sl @ e .
) 2 ¢ e £ “ uumuuia NG el |
e N () & g e A LIS
mﬁ..\ltl':; i ~ X _ﬁ < s 1
® 200K & £ t
y e Wul 1 F;
= v vogq1aG33IR utd ye
NOxCsid St L HENE] O KL T
O 125388
—
—_——w
-
¢ X132
8f 1333
A
LS 4
21
2
= (110
= pa——— 1210
; {21129
. - 16125
{s10d
i3
12109
i
; O \0I9
- W
25 & -0 (8:21v9
O (8751109
2 ANk |

|043us) B3R DG PuUt QJl4

The Computer Journal / #52

12

able is controlled by PLD US8.

The latch enable signal, DACLTCH, is generated by the
circuitry in PLD U8 based on a 16 bit up/down gray scale
counter. The counter state variables are Qd, Qc, Qb, and Qa.
The counter normally is in idle state 0. When a 16 bit value is
loaded into the DAC data shift register (U6 and U7), it en-
ables the counter to start counting up in the sequence 0, 1, 3,
2, 6, ... to the end state 8. The DACLTCH goes high. Now the

y code counter reverses direction and starts counting
down through the states 9, 11, and 10. DACLTCH stays high
during these states. When DACLTCH is high, the successor
state of state 10 is the idle state, state 0. When this state
transition occurs, DACLTCH is held high for the high half of
TCLK and then deasserted. Thus DACLTCH makes its high-
to-low transition one half clock cycle after 18 data bits have
been clocked into the DAC.

The DAC output is a voltage ranging from -3V to +3V.
This output is connected directly to the switched capacitor
lowpass filter, U15.

DAC Shift Register

Two 74HC299 shift registers, U6 and U7, are used to load
serial data into the DAC. The shift registers are clocked by
TCLK, the same as the DAC. Normally, the shift registers are
configured to shift data left, shifting data out of the most
significant bit (Qh’ of U7) to the DAC and shifting zeroes in
(SR input of Ub). New data is loaded into the shift register
from the ASIC data bus, GD[15:0] by writing to ASIC ad-
dress 18 (hex). The address is decoded by PLD U8 to assert
SERDATLD to the shift register. This write also initiates the
DAC latch enable control, already described.

Programmable Lowpass Filter

The output from the DAC is filtered by a switched capaci-
tor lowpass filter, U15. This device is an LTC1064-1 made by
Linear Technology Corporation. It is an 8th order, clock tun-
able, elliptic function (Cauer) lowpass filter with +/- 0.1 dB
passband ripple and 72 dB stopband attenuation at 1.5 times
the cutoff frequency. The cutoff frequency is 1/100th of the
clock input frequency, so the lowpass setpoint is easily con-
trolled by changing the clock frequency. All this in only one
14 pin DIP package! The output from the lowpass filter is
buffered by a unity gain buffer, U13, to drive the output.

Fliter Clock Control

There are two mechanisms used to control the filter clock
frequency. For wide bandwidths, the filter clock is controlled
by an 8 bit programmable down counter, U5 (a 74F1779) and
part of PLD U3. The counter is driven by TCLK. When the
counter reaches terminal count, the filter clock output
FILTCLK is toggled and the counter is reloaded with the byte
in register U4. The counter load control signal, CLOAD, is
generated asynchronously during the low half of TCLK
when the counter terminal count signal TC is active. The
design is such that for a load value of zero, FILTCLK will
toggle every TCLK cycle, for a maximum output frequency
of 4 MHz corresponding to a filter cutoff of 40 KHz. The
toggle period of FILTCLK is n+1 times the TCLK period,
where n is the value programmed into register U4, range
{0..255}.

The signal CNTNABL is asserted active low to enable the
filter clock divider, U5, and the control of FILTCLK by the
counter terminal count output. CNTNABLIs set active low by

The Computer Journal / #52

writing to ASIC bus address 1D (hex) and cleared by writing
to ASIC bus address 1C (hex). Using this technique to control
CNTNABL allowed this signal to be set and cleared under
program control with no additional inputs to PLD U3.

For values of lowpass cutoff below about 160 Hz, the re-
quired period exceeds the capacity of the counter. So, for this
case, one of the RTX2001 internal timers is used to generate
periodic interrupts. The required period is loaded into timer
1 and timer 1 interrupts are unmasked. The timer 1 interrupt
service routine consists of a write to ASIC bus address 1F
(hex) which is decoded by PLD U3 to toggle the FILTCLK
output if CNTNABL is high. This is probably the most obvi-
ous hardware/ processor resource tradeoff, where a hard-
ware counter and latch was added to reduce interrupt servic-
ing to a more reasonable frequency of about once every 32
milliseconds, particularly since the filter clock interrupt is at
a lower priority than the DAC update interrupt.

External RAM

An additional 8K x 16 of static RAM has been added to
the EBForth board for code and data space. The devices used
are Cypress Semiconductor CY7C185 devices, U1l and U2,
with a worst case access time of 45 ns. These RAMs have two
chip select inputs, both of which must be active for accessing
the chip. One is active high and one is active low. In order to
minimize any delays that reduce read data access and write
data setup times, the RTX2001 PCLK is connected directly to
the active low chip select input, CE1. All other memory ad-
dress decoding affects the other chip select, CE2.

The added RAM is memory mapped directly above the
EBForth board ROM/RAM, starting at memory address
05000 (hex) through O8FFE. This RAM is byte addressable,
with U1 containing the high byte and U2 the low byte. PLD
U3 is used for decoding memory address bits MA[19:12};
UDS, and LDS to generate the RAM select signals URAMSEL
and LRAMSEL.

Miscellaneous Circuitry

About the only hardware not already described is the RE-
SET buffer, the NMI pushbutton interface, and the positive
and negative voltage regulators for the analog circuitry. U16,
a 74HC132 Schmitt trigger NAND gate, is used for the RE-
SET interface and as an asynchronous set-reset flip-flop for
the NMI pushbutton interface. The EBForth board RESET in-
put is buffered by two sections of U16 and then input to the
two PLDs, U3 and U8. One section of U8 is used to invert
buffered RESET to drive the active low RESET inputs for the
filter counter load register, U4, the input FIFO, U9 and U10,
and the DAC shift register, U6 and U7.

Two sections of U16 form a cross-coupled set-reset flip-
flop to debounce the current limited and can, therefore, toler-
ate being shorted to ground by the pushbutton switch.
Among other things, it saves finding room for two pullup
resistors. The output from U16C is connected directly to the
non-maskable interrupt input on the EBForth board.

Adjustable three terminal regulators U1l and U12 are
used to generate the +5V and -5V supply voltages for the
DAGC, the lowpass filter, and the output buffer.

Software Overview
The main software loop is a simple two command loop. It
reads a command from the input FIFO and then executes that
command. There are 16 recognized commands that are used

13

£ 40 € “uuzm_ ge2¢ Kaiua 3sajuod
pue| 04 uef

ees1 22 114dy |

+say3sboy paiy aur punosb
{e31Bip pue punoJsb Boyrwy *|

1982X1Y SI¥¥YH ONISN 1s930§
HOLUY3INID WH043AUM AYDdLiIddY
[Wigier-5] ONY3XD aNNCYd CNT0Y) CNNCAD GNIOHI GNIGAD N0¥D NG ONTIOND GNNO¥3 GNN0XD aNICHD ONN0D ONNO¥I ANNCHD ONNOYD GNNOD
2 : 2 2 2 2 2 2 el 2 2 2 2 2
[o 5] SN X £i1-2 . Stat-) . S, . SN . Dnled . SECa-) . SXANle} . 8Tuw . SECL) -~ 2 B . Dwanv) - ({55] - o (15 .
1S ——T 00 L om0 mhT Shd L W) m—h Ire0 ——r w0 =T 1m0 b 80 =L B4 ——L G0 =k (WO _—f Hs0—_—F €= 0T
[{2 - jra] - ksl hal 0 = [2] = [10) - Li¥] - 13 = 130 _ = " = n = € - [1d] = ny hl
3 AG+ AZ AG+ ACr AS+ AS+ AS+ F3+ AS+ AS+ AG+ AS+ AC+
) o
1580 %80
Jm_ ”~ ”l
|
ENCu9Y B4 I % uv_|kJ)
Y. 53X -
o nz:omuanwmu | ovoaow £ _f_ 2 AN A
52 : L3 1
—ta W — _ ONAQNIY N_W I _m.. had m ¢ an
vz g 180> L5 ONnoE9Y ' w3 il =
158 ¥ =
i N_Vnz:.uwwu te ey IILM _ .mﬂ|._ . g €
150 ——a i VAN ! —_— n
= — i T ONNOADY el T 51090
o ——a e 10070 — v i — AZl- 93 Ag-
; : [el 2 ONNOEIY £l ¢ 990 ¥35
e Ay D ST TESONAS ER T TR o
e] Pt wee b 2 o | 57
: e - I e 783 r2ls 03 Ags
2 (.w, 1 v ? % ' '
PEE T 580 P f— [o
30 50 1 5! £
FY
annoass 4> oy 5
43430 - - —L
anding . . e
49311 4 SSEdMOT ! ¢ ; ¢ nuumu_,"w £t “ d
403 10dey payoyiag 4 o (216vg 4 -
m ”l TG 4> n ” T w0
:&M .CM 1 B‘M mtm - £ D3NN A+
= O woomE
g 70 -0 HI1TWED
< Bled ¥35
2 O AL
—O AL 3

The Computer Journal / #52

14

to set up the Waveform Generator for one of 5 operating
modes, set the lowpass filter cutoff setpoint, set the desired
DAC sample rate, and load data into the data queues, and set
up the other parameters necessary. One of the commands is
then used to start the output process.

There are supporting words that control how the next out-
put point is calculated or fetched from the data queue and
put into the DAC holding register ready for the next timer 0

1C (not aseigned) Enable Filter Clock
Counter

1D (not assigned) Disable Filter Clock
Counter

1E (not assigned) Load Filter Clock Register
8 bite

iF (not assigned) Toggle Filter Clock Output

Registers 1C, 1D and 1F are pseudo registers in the sense
that no data is stored. Instead, a par-

Listing 2.
Here is the overall operating loop:
t main (-)
initialixe
BEGIN begin an infinite loop
readPifo read a command from the input stream
doCmd perform the command
AGAIN ; go do it again

and here is the command execution word:

t1doCmd (N -) perform the command represented by n

ticular action occurs by writing to that
address. The Filter Clock Register, ad-
dress 1E, uses only the lower 8 data
bits, The upper 8 bits can be anything.

Sine Wave Generation

There are two methods of generat-
ing sinewave implemented. One of
them is a direct table lookup, and one
of them allows interpolation of values
between the points represented in the

DUP cmdMsk AND make sure that the upper 12 bits are zeroes table. The sine table is an 800 value
Ir it the result of the logical AND is non-zero table. The choice of 800 points isn’t ar-
DROP then it is an unrecognized command and discarded bit First, let’ lai bout h

+" Unrecognized Command * an error message to the user ltrary. rirsl, let's explain about how
ELSE parse EXECUTE otherwise get an execution vector from the intermediate values of sine arguments

are derived. The sine of the sum of two

interrupt. The output sample rate is controlled by program-
ming it into timer 0. The timer 0 interrupt routine reads
whatever data has been put into scratchpad register RH and
writes it into the DAC shift register where it is automatically
transferred into the serial DAC. Then the service routine dec-
rements the RX register to set the stale data flag and returns
to the routine just interrupted. That routine is a loop that
repeatedly reads the RX register and when it detects a non-
zero value, it updates the RH scratchpad register with the
next data value to be output and clears the RX register.

There are software routines for creating and managing the
queues in data address space and in code space. One of the
more useful defining words implemented is one for building
tables in code space. During compilation, the word table will
create a table of n words, where n is the top stack value when
table is invoked. During runtime, calling the table name will
return the nth value in the table, where n is the top stack
value. This little word is quite useful for building tables of
execution vectors, for example. The remaining software is for
controlling the specific devices attached to the ASIC bus and
for calculating the interrelated parameters for sinewave and
other output waveform generation.

In addition to the operating code, there is some software
for demonstrating the current capabilities of the Arbitrary
Waveform Generator.

See Listing 1 for the specific commands which have been
implemented and listing 2 for the overall operating loop and
command execution word.

Software Description

ASIC Bus Addressable Devices
The following devices are addressable via the ASIC bus:

addr(hex) read write
18 {not assigned) DAC shift Register 16 bit
19 Input FIFO 16 bit (not assigned)
1A (not assigned) (not assigned)
1B FIFO Empty & Full Status (not assigned)
bits O and 1

The Computer Journal / #52

angles is expressed as follows:
sin(x + y) = sin(x) * cos(y) + cos(x) * sin(y)

Now, let the angle y be a small angle. Then we can ap-
proximate the sin(y) with y, where y is expressed in radians,
and the cos(y) as nearly 1. So now the sine can be expressed
as:

sin(x + y) = ein(x) + y * cos(x)

If we pick y to be a binary power of 2, then we can calcu-
late the sin(x+y) with two table lookups, one shift to perform
the multiply by y and an add. By choosing the interval be-
tween table points to be y = 1/128 radians, there are 804
points for one full cycle. This value was rounded to 800 to
simplify some of the phase increment and sample rate calcu-
lations, without any loss in accuracy. The values in the table
have been scaled to be equivalent to a 2 volt RMS output,
allowing approximately 120 millivolts headroom to the DAC
full scale output of 3 volts.

In the Fast sine mode of operation, the variable phase is
used for phase accumulation and the variable phaselnc is
used to hold the increment added to phase for each succes-
sive data point. The Forth word nextPt is used to look up the
value of sine for the current phase, put that value in the RH
scratchpad, and then update phase by adding the value of
phaselnc to it.

In the accurate sine mode of operation, there are more
software operations performed to determine the output
value. There are two more variables used to keep track of the
current value of phase and phase increment. They are del-
Phase and delPhaselnc. The Forth word newPhase takes care
of calculating the new phase. It does so by first adding the
incremental phase increment delPhaselnc to delPhase. This
value takes care of the intermediate values between table
points, and is scaled to one part in 800. Anything over 800
will contribute to the new value of phase, so the next value of
phase = phase + phaselnc + delPhase/800. Now we can look

15

up the sine of the phase variable from the table. Not done
yet, though. Use the trigonometric identity that cos(x) = sin(x
+ pi/2) and look up the cosine.

Now all we must do is to multiply it by a scaled version of
delPhase (our small angle) and add it to sin(x) to get the sine
of the exact phase angle. The scaling needs to take care of
converting to equivalent radians and divide by 128, as I dis-
cussed earlier. This calculation, and the appropriate scaling
are performed in the Forth word cosAdj. The other two op-
erations performed on the accurate sine point before it is put
into the DAC scratchpad register, RH, is to multiply it by a
scaling factor to set the output to some multiple of 50
mVRMS, and subtract an offset value. The word accuPt per-
forms this operation. Finally, the word newAccuPt is the one
that puts the value into scratchpad register RH, clears the
stale data flag in RX, and proceeds to calculate the new value
of phase and delPhase.

interrupt Routines

There are three interrupts utilized in this design. The non-
maskable interrupt is used to stop whatever is happening
and abort the current operation with the message “Stopped”.
The word pbStop implements this routine. Timers 0 and 1 are
used to control the DAC sample interval and the filter clock,
respectively.

The timer 0 interrupt service routine is called newPt. It
transfers the value in scratchpad register RH to the DAC shift
register and then decrements the value in RX to make it non-
2ero.

The timer 1 interrupt service routine is even simpler. It
just toggles the filter clock by writing to ASIC address 1F
(hex). The timer 1 interrupt is used for filter cutoff values
lower than about 160 Hz.

Parameter Setting Routines

The word setCutoff takes care of setting the filter clock
value to some value between 1 Hz and 40 Khz. If the system
clock divisor is less than 256, then the hardware divider is
used and the timer 1 interrupt is disabled. On the other hand,
if it is 256 or greater, then the hardware divider is disabled
and the divisor is loaded into timer 1 and it is used for tog-
gling the filter clock.

There is an inter-relationship between the system clock
frequency, the desired sinewave output frequency, the num-
ber of points represented in one cycle, and the phase incre-
ment added to the phase variable for each output point. That
relationship is:

phase_increment = (#table_points/cycle) * (timer 0 period)
* frequency

timer 0 input clock frequency (system clock)

It turns out that the ratio of #table_points/cycle to system
clock is 1/10000. This is part of the reason for picking the
number of points in the table as 800. The word calcInt finds
the timer 0 period given the phase increment and the sine-
wave frequency. The word calcPhaselnc finds the required
phase increment given the desired frequency. It uses a mode
dependent value of minimum timer 0 period.

There is some interaction between the phase increment

calculations and the timebase period, particularly for low fre-
quency operation where the calculated value of phase incre-
ment is less than one. For this case, the timer 0 period is
increased until a minimum value of phase increment can be
achieved. The actual sinewave frequency is calculated from
the phase increment and the timer 0 period. This value may
differ slightly from the programmed frequency due to the
discrete nature of the increment and the period. Such is the
nature of approximating continuous values with digital rep-
resentations.

Queue Building and Management

Queues are an important data structure used in this de-
sign. They are used for output data buffering and for simula-
tion of the input FIFO. The queue building word for data
space is buildDQ and for code space is buildCQ. Function-
ally, they behave the same. They're used by putting the de-
sired size of the queue on the stack, followed by buildDQ or
buildCQ, followed by the assigned queue name.

The queue structure consists of a variable to keep track of
the number of values in the queue, the tail pointer where
new values are written into the queue, the head pointer
where data is read from the queue, an end pointer which
points to the highest storage address in the queue, and 2n
bytes of storage for the data. When the particular queues are
defined, the head and tail pointers are initialized to point to
the first storage location in the queue, the end pointer is set to
point to the last storage location, and the #values variable is
set to zero.

The data locations aren’t initialized. They contain what-
ever random data was left in memory. The word >Cbuf is
used for putting values into the queue at the tail pointer,
incrementing the pointer and #values, and adjusting the
pointer of it goes beyond the end pointer. The word Cbuf>
extracts values from the queue at the head pointer, incre-
ments the pointer, decrements the #value variable, and ad-
justs the pointer if it exceeds the end pointer. The word >Que
uses >Cbuf to put a value into the queue if the queue is not
full. It returns a false flag if the queue wasn’t full or a true
flag if it was. The word Que> extracts a value from the queue
if it isn’t empty and returns a true flag if it was successful. It
returns only a false flag if the queue was empty. The word
#Que returns the number of valid values currently in the
queue.

Arbitrary Data Output Modes

There are three output modes implemented using the data
queues. The word circBuf simply extracts the next value from
the current read queue and puts it into the RH scratchpad
register. There is no checking to see if the queue is empty.
This mode allows repeated output of the same data sequence
and is useful for generating periodic waveforms. The word
pingPong implements an output mode where data is read
from the current read queue and output until the queue is
emptied. Then the read buffer is switched to the other queue
and it is read until it empties. When both queues have been
emptied, it stops. The word onceOut operates in a similar
manner, except that it stops after extracting data from the
first queue.

We will look at the software source in the next issue.@®

it we make peaceful revolution impossible, we make violent revolution inevitiable.—John F, Kennedy

16

The Computer Journal / #52

B.Y. O. Assembler

Build Your Own (Cross-) Assembler...in Forth

by Brad Rodriguez

introduction

In a previous issue of this journal 1 described how to
“bootstrap” yourself into a new processor, with a simple de-
bug monitor. But how do you write code for this new CPU,
when you can't find or can't afford an assembler? Build your
own!

Forth is an ideal language for this. I've written cross-as-
semblers in as little as two hours (for the TMS320, over a
long lunch break). Two days is perhaps more common; and
one processor (the Zilog Super8) took me five days. But
when you have more time than money, this is a bargain.

In part 1 of this article I will describe the basic principles
of Forth-style assemblers—structured, single-pass, postfix.
Much of this will apply to any processor, and these concepts
are in almost every Forth assembler.

In part 2, I will examine an assembler for a specific CPU:
the Motorola 6809. This assembler is simple but not trivial,
occupying 15 screens of source code. Among other things, it
shows how to handle instructions with multiple modes (in
this case, addressing modes). By studying this example, you
can figure out how to handle the peculiarities of your own
CPU.

Why Use Forth?

[believe that Forth is the easiest language in which to
write assemblers.

First and foremost, Forth has a “text interpreter” designed
to look up text strings and perform some related action.
Turning text strings into bytes is exactly what is needed to
compile assembler mnemonics! Operands and addressing
modes can also be handled as Forth “words.”

Forth also includes “defining words,” which create large
sets of words with a common action. This feature is very
useful when defining assembler mnemonics.

Since every Forth word is always available, Forth’s arith-

metic and logical functions can be used within the assembler
environment to perform address and operand arithmetic.

Finally, since the assembler is entirely implemented in
Forth words, Forth’s “colon definitions” provide a rudimen-
tary macro facility, with no extra effort.

The Simplest Case: Assembling a NOP

To understand how Forth translates mnemonics to ma-
chine code, consider the simplest case: the NOP instruction
(12 hex on the 6809).

A conventional assembler, on encountering a NOP in the
opcode field, must append a 12H byte to the output file and
advance the location counter by 1. Operands and comments
are ignored. (I will ignore labels for the time being.)

In Forth, the memory-resident dictionary is usually the
output “file.” So, make NOP a Forth word, and give it an
action, namely, “append 12H to the dictionary and advance
the dictionary pointer.”

HEX
s NOP, 12 ¢, ;

Assembler opcodes are often given Forth names which in-
clude a trailing comma, as shown above. This is because
many Forth words—such as AND XOR and OR—conflict
with assembler mnemonics. The simplest solution is to
change the assembler mnemonics slightly, usually with a
trailing comma. (This comma is a Forth convention, indicat-
ing that something is appended to the dictionary.)

The Class of “Inherent” Opcodes
Most processors have many instructions, like NOP, which
require no operands. All of these could be defined as Forth
colon definitions, but this duplicates code, and wastes a lot of
space. It's much more efficient to use Forth’s “defining
word” mechanism to give all of these

Brad Rodriguez lives a double life. On odd-numbered days he is T-Recursive
Technology, consulting in hardware and software design for real-time and embedded
microprocessor applications. On even-numbered days he is a student, pursuing a
Ph.D. in Electrical Engineering and exploring the possibilities of artificially-intelli-
gent control systems. Brad discovered Forth in 1978, has been using it professionally
since 1982, and has been known to annoy people with his incessant tales of how
quickly things can be accomplished in Forth. He has written Forth assemblers for the
6809, 6801, 6502, Z8, Super8, TMS320,and two generally-unknown microprogram-
med machines. The 6809 is his favorite 8-bit processor, partly because it and the 16-
bit PDP-11 share the distinction of being “the best Forth processors that were not
designed to be Forth processors.” Brad prefers to be contacted as B.RODRIGUEZ2
on GEnie, but will accept email as bradford@maccs.dcss.mcmaster.ca on the In-

ternet.

The Computer Journal / #52

words a common action. In object-ori-
ented parlance, this builds “instances”
of a single “class.”

This is done with Forth’s CREATE
and DOES>. (In fig-Forth, as used in
the 6809 assembler, the words are
<BUILDS and DOES>.) See figure 1.

In this case, the parameter (which is
specific to each instance) is simply the
opcode to be assembled for each in-
struction.

This technique provides a substan-
tial memory savings, with almost no
speed penalty. But the real advantage

17

becomes evident when complex instruction actions—such as
required for parameters, or addressing modes—are involved.

Handling Operands

Most assembler opcodes, it is true, require one or more
operands. As part of the action for these instructions, Forth
routines could be written to parse text from the input stream,
and interpret this text as operand fields. But why? The Forth
environment already provides a parse-and-interpret mecha-
nism!

So, Forth will be used to parse operands. Numbers are
parsed normally (in any basel), and equates can be Forth
CONSTANTSs. But, since the operands determine how the
opcode is handled, they will be processed first. The results of
operand parsing will be left on Forth’s stack, to be picked up
by the opcode word. This leads to Forth’s unique postfix
format for assemblers: operands, followed by opcode.

Take, for example, the 6809's ORCC instruction, which
takes a single numeric parameter:

HEX
: ORCC,

lA ¢, ¢ ;

The exact sequence of actions for ORCC, is: 1) put 1A hex
on the parameter stack; 2) append the top stack item (the 1A)
to the dictionary, and drop it from the stack; 3) append the
new top stack item (the operand) to the dictionary, and drop
it from the stack. It is assumed that a numeric value was
already on the stack, for the second C, to use. This numeric
value is the result of the operand parsing, which, in this case,
is simply the parsing of a single integer value:

HEX
OF ORCC,

The advantage here is that all of Forth's power to operate
on stack values, via both built-in operators and newly-de-
fined functions, can be employed to create and modify oper-
ands. For example:

HEX

01 CONSTANT CY-FLAG
02 CONSTANT OV-FLAG
04 CONSTANT 2-FLAG

{ & “named” numeric value)

CY-!'LAG.Z-FLAG + ORCC, (add 1 and 4 to get operand)
The extension of operand-passing to the defining words
technique is straightforward.

Handling Addressing Modes

Rarely can an operand, or an opcode, be used unmodified.
Most of the instructions in a modern processor can take mul-
tiple forms, depending on the programmer’s choice of ad-
dressing mode.

Forth assemblers have attacked this problem in a number
of ways, depending on the requirements of the specific proc-
essor. All of these techniques remain true to the Forth meth-
odology: the addressing mode operators are implemented as
Forth words. When these words are executed, they alter the
assembly of the current instruction.

1. Leaving additional parameters on the stack. This is most
useful when an addressing mode must always be specified.
The addressing-mode word leaves some constant value on
the stack, to be picked up by the opcode word. Sometimes

18

Figure 1
: INHERENT { Defines the name of the class)
CREATE (this will create an instance)
c, (store the parameter for each instance)
DOES> (this is the claes’ common action)
Cé {(get each instance’s parameter)
c, { the assembly action, as above)
; (End of definition)
HEX
12 INHERENT NOP, (Defines an instance NOP, of class
INHERENT, with parameter 12H.)
3A INHERENT ABX, (Another instance - the ABX instr)
3D INHERENT MUL, (Another instance - the MUL instr)

this value can be a “magic number” which can be added to
the opcode to modify it for the different mode. When this is
not feasible, the addressing-mode value can activate a CASE
statement within the opcode, to select one of several actions.
In this latter case, instructions of different lengths, possibly
with different operands, can be assembled depending on the
addressing mode.

2. Setting flags or values in fixed variables. This is most use-
ful when the addressing mode is optional. Without knowing
whether an addressing mode was specified, you don’t know
if the value on the stack is a “magic number” or just an
operand value. The solution: have the addressing mode put
its magic number in a predefined variable (often called
MODE). This variable is initialized to a default value, and
reset to this default value after each instruction is assembled.
Thus, this variable can be tested to see if an addressing mode
was specified (overriding the default).

3. Modifying parameter values already on the stack. It is occa-
sionally possible to implement addressing mode words that
work by modifying an operand value. This is rarely seen.

All three of these techniques are used, to some extent,
within the 6809 assembler.

For most processors, register names can simply be Forth
CONSTANTs, which leave a value on the stack. For some
processors it is useful to have register names specify “register
addressing mode” as well. This is easily done by defining
register names with a new defining word, whose run-time
action sets the addressing mode (either on the stack or in a
MODE variable).

Some processors allow multiple addressing modes in a
single instruction. If the number of addressing modes is fixed
by the instruction, they can be left on the stack. If the number
of addressing modes is variable, and it is desired to know
how many have been specified, multiple MODE variables
can be used for the first, second, etc. (In one case—the Su-
per8—I had to keep track of not only how many addressing
modes were specified, but also where among the operands
they were specified. I did this by saving the stack position
along with each addressing mode.)

Consider the 6809 ADD instruction. To simplify things,
ignore the Indexed addressing modes for now, and just con-
sider the remaining three addressing modes: Immediate, Di-
rect, and Extended. These will be specified as follows:

source code assembles as

Immediates number # ADD, 8B nn
Direct: address <> ADD, 9B aa
Extended: address ADD, BB aa aa

Since Extended has no addressing mode operator, the

The Computer Journal / #52

mode-variable approach seems to be indicated. The Forth
words # and <> will set MODE.

Observe the regularity in the 6809 opcodes. If the Immedi-
ate opcode is the “base” value, then the Direct opcode is this
value plus 10 hex, and the Extended opcode is this value plus
30 hex. (And the Indexed opcode, incidentally, is this value
plus 20 hex.) This applies uniformly across almost all 6809
instructions which use these addressing modes. (The excep-
tions are those opcodes whose Direct opcodes are of the form
0Ox hex.)

Regularities like this are made to be exploited! This is a
general rule for writing assemblers: find or make an opcode
chart, and look for regularities—especially those applying to
addressing modes or other instruction modifiers (like condi-
tion codes).

. In this case, appropriate MODE values are suggested:

VARIABLE MODE HEX

s # 0 MODE ! ;
: © 10 MODE ! ;
: RESET 30 MODE 1 ;

The default MODE value is 30 hex (for Extended mode),
so a Forth word RESET is added to restore this value. RESET
will be used after every instruction is assembled.

The ADD, routine can now be written. Let’s go ahead and
write it using a defining word:

HEX
t GENERAL-OP \ base-opcode —
CREATE C,
DOES> \ operand —
ce \ get the base opcode
MODE ¢ + \ add the “magic number”
c, \ assemble the opcode
MODE @ CASE
0 OF C, ENDOF \ byte operand
10 OF C, ENDOF \ byte operand
30 OF , ENDOF \ word operand
ENDCASE
RESET ;

8B GENERAL~OP ADD,

Each “instance” of GENERAL-OP will have a different
base opcode. When ADD, executes, it will fetch this base
opcode, add the MODE value to it, and assemble that byte.
Then it will take the operand which was passed on the stack,
and assemble it either as a byte or word operand, depending
on the selected mode. Finally, it will reset MODE.

Note that all of the code is now defined to create instruc-
tions in the same family as ADD:

HEX 89 GENERAL-OP ADC,

84 GENERAL-OP AND,

85 GENERAL-OP BIT,
etc.

The memory savings from defining words really become
evident now. Each new opcode word executes the lengthy bit
of DOES> code given above; but each word is only a one-
byte Forth definition (plus header and code field, of course).

This is not the actual code from the 6809 assembler—there
are additional special cases which need to be handled. But it
demonstrates that, by storing enough mode information, and
by making liberal use of CASE statements, the most ludi-
crous instruction sets can be assembled.

Handling Control Structures

The Computer Journal / #52

The virtues of structured programming, have long been
sung—and there are countless “structured assembly” macro
packages for conventional assemblers. But Forth assemblers
favor label-free, structured assembly code for a pragmatic
reason: in Forth, it's simpler to create assembler structures
than labels!

The structures commonly included in Forth assemblers
are intended to resemble the programming structures of
high-level Forth. (Again, the assembler structures are usually
distinguished by a trailing comma.)

1. BEGIN, ... UNTIL,

The BEGIN, ... UNTIL, construct is the simplest assembler
structure to understand. The assembler code is to loop back
to the BEGIN point, until some condition is satisfied. The
Forth assembler syntax is

BEGIN, morxe code <¢c¢ UNTIL,

where ‘cc’ is a condition code, which has presumably been
defined—either as an operand or an addressing mode—for
the jump instructions.

Obviously, the UNTIL, will assemble a conditional jump.
The sense of the jump must be “inverted” so that if ‘cc’ is sat-
isfied, the jump does NOT take place, but instead the code
“falls through” the jump. The conventional assembler
equivalent would be:

xXx:

JR -~cc,xxx

(where ~cc is the logical inverse of cc.)

Forth offers two aids to implementing BEGIN, and UN-
TIL,. The word HERE will return the current location counter
value. And values may be kept deep in the stack, with no
effect on Forth processing, then “elevated” when required.

So: BEGIN, will “remember” a location counter, by plac-
ing its value on the stack. UNTIL, will assemble a conditional
jump to the “remembered” location.

: BEGIN, (- a) HERE ;
: UNTIL, (a cc =) NOTCC JR, ;

This introduces the common Forth stack notation, to indi-
cate that BEGIN, leaves one value (an address) on the stack.
UNTIL, consumes two values (an address and a condition
code) from the stack, with the condition code on top. It is
presumed that a word NOTCC has been defined, which will
convert a condition code to its logical inverse. It is also pre-
sumed that the opcode word JR, has been defined, which will
expect an address and a condition code as operands. (JR, is a
more general example than the branch instructions used in
the 6809 assembler.)

The use of the stack for storage of the loop address allows
BEGIN, ... UNTIL, constructs to be nested, as:

BEGIN, ... BEGIN, ... cc UNTIL, ... cc UNTIL,

The “inner” UNTIL, resolves the “inner” BEGIN, forming
a loop wholly contained within the outer BEGIN, ... UNTIL,
loop.

2. BEGIN, ... AGAIN,
Forth commonly provides an “infinite loop” construct,

19

BEGIN ... AGAIN , which never exits. For the sake of com-
pleteness, this is usually implemented in the assembler as
well.

Obviously, this is implemented in the same manner as BE-
GIN, ... UNTIL, except that the jump which is assembled by
AGAIN, is an unconditional jump.

3.D0, ... LOOP,

Many processors offer some kind of looping instruction.
Since the 6809 does not, let's consider the Zilog Supers; its
Decrement-and-Jump-Non-Zero (DJNZ) instruction can use
any of 16 registers as the loop counter. This can be written in
structured assembler:

DO, more code r LOooP,

where r is the register used as the loop counter. Once again,
the intent is to make the assembler construct resemble the
high-level Forth construct.

tD0, (-a)
1t 00OP, (ar-)

HERE ;
DINZ, ;

Some Forth assemblers go so far as to make DO, assemble
a load-immediate instruction for the loop counter—but this
loses flexibility. Sometimes the loop count isn't a constant. So
I prefer the above definition of DO, .

4.IF, ... THEN,

The IF, ... THEN, construct is the simplest forward-refer-
encing construct. If a condition is satisfied, the code within
the IF,..THEN, is to be executed; otherwise, control is trans-
ferred to the first instruction after THEN,,.

(Note that Forth normally employs THEN, where other
languages use “endif.” You can have both in your assem-
bler.)

The Forth syntax is

for which the “conventional” equivalent is

JP ~cc,xxXX

xxXxt

Note that, once again, the condition code must be inverted
to produce the expected logical sense for IF, .

In a single pass assembler, the requisite forward jump
cannot be directly assembled, since the destination address of
the jump is not known when IF, is encountered. This prob-
lem is solved by causing IF, to assemble a “dummy” jump,
and stack the address of the jump’s operand field. Later, the
word THEN, (which will provide the destination address)
can remove this stacked address and “patch” the jump in-
struction accordingly.

t IF, (cc - a) NOT 0 SWAP JP, (conditional jump
HERE 2 - ; with 2-byte operand)
1 THEN, (a) HERE SWAP ! ; (store HERE at the

stacked address)

IF, inverts the condition code, assembles a conditional
jump to address zero, and then puts on the stack the address

of the jump address field. (After JP, is assembled, the location
counter HERE points past the jump instruction, so we need
to subtract two to get the location of the address field.)
THEN, will patch the current location into the operand field
of that jump.

If relative jumps are used, additional code must be added
to THEN, to calculate the relative offset.

5. IF, ... ELSE, ... THEN,

A refinement of the IF,..THEN, construct allows code to
be executed if the condition is NOT satisfied. The Forth syn-
tax is

ELSE, has the expected meaning: if the first part of this
statement is not executed, then the second part is.

The assembler code necessary to create this construct is:

Jp ~CC , XXX
(the “if” code)

JPyyy
XXX ees (the “else” code)

YYY:

ELSE, must modify the actions of IF, and THEN, as fol-
lows: a) the forward jump from IF, must be patched to the
start of the “else” code (“xxx”); and b) the address supplied
by THEN, must be patched into the unconditional jump in-
struction at the end of the “if” code (“JP yyy”). ELSE, must
also assemble the unconditional jump. This is done thus:

t ELSE (a - a) 0T Jp, (unconditional jump)
HERE 2 - (stack its address
for THEN, to patch)
SWAP { get the patch address

of the IF, jump)

HERE SWAP ! {(patch it to the current
location, i.s., the

; next instruction)

Note that the jump condition ‘T assembles a “jump al-
ways” instruction. The code from IF, and THEN, can be “re-
used” if the condition ‘F’ is defined as the condition-code
inverse of ‘T":

t ELSE (a - a)

F IF, SWAP THEN, ;

The SWAP of the stacked addresses reverses the patch or-
der, so that the THEN, inside ELSE, patches the original IF;
and the final THEN, patches the IF, inside ELSE,. Graphi-
cally, this becomes:

IF,(1) ... IF,(2) THEN,(1) ... THEN,(2)
\ /

inside ELSE,
IF,..THEN, and IF,..ELSE,..THEN, structures can be

nested. This freedom of nesting also extends to mixtures of
these and BEGIN,...UNTIL, structures.

6. BEGIN, ... WHILE, ... REPEAT,
The final, and most complex, assembler control structure
See BYO Assembler, page 39

The Computer Journal / #52

Assembly Language Programming
Today's Example: ZCNFG

by A. E. Hawley

The last two articles were about ‘getting started” in assem-
bly language programming. Now lets take a look at the real
world of AL programs with a tour of ZCNFG, a public do-
main program that is sophisticated enough to illustrate many
of the principles that you can apply to your own programs.
The main focus will be on a discipline that most of us learned
the hard way by ignoring it: source program structure. Along
the way, we'll get introduced to some of the algorithms and
code structures in ZCNFG. They will help to dispel some of
the mystery about writing .CFG files for other programs.

To get the most out of the following discussion, you
should have the complete source for ZCNFG available for
study and reference. ZCNFG is available via modem down-
load from Z-nodes and via mail from ZSUS.

What ZCNFG Does

Many commercial programs come with an INSTALL
utility. That utility customizes the program so that it is
compatible with your computer hardware and your
performance preferences. For example, a communications
program needs to know the port assigned to the modem, and
the default communication protocol to use. CP/M programs
that manipulate the screen need installation of the control
data for your terminal or video display. INSTALL utilities
configure their target program by modifying data in the
image of the program stored on disk so that subsequent
invocations will exhibit the configured performance. Each
installation program is written by a different author, and no
two user interfaces are alike. Configuration of public domain
programs has been traditionally handled by reassembly of
the program or by changing the affected data with a
debugger or a file patching program like ZPATCH. Both
require obvious skills on the part of the user as well as a
certain amount of research to discover what changes are
possible and what new values are required to achieve the
desired changes. Again, no two programs are configured the
same way!

During early development of ZMAC, ZML, and ZMLIB 1
wrote configuration utilities for each program. Each

enhancement could result in a revision of the associated
configuration program, including the inevitable debugging
sessions. What a lot of wheel-spinning! The first solution was
to combine the three programs into one, with a common
main program to maintain an on-screen menu and three data
sections to specify what is displayed on the menu. Of course,
there was also a section to read and write the proper file
being configured. Since this made a rather large configur-
ation program, the next move was to make three files of the
tables. The configuration program then loaded only the file
appropriate for the target program. Now all I had to do was
maintain the file of configuration data for each program.

There are practical pay-offs to well thought out
organization of the code in a programl

There is only one configuration program to maintain, and
debugging caused by changes in the target file is eliminated.
Now that is worthwhile!

ZCNFG was born when I realized that this idea could be
used with any target program that is organized with configu-
ration data near the start of the program. Although many
older CP/M programs were not written that way, more re-
cent programs adapted or written for Z-system have adopted
that style. There are practical pay-offs to well thought out
organization of the code in a program!

ZCNFG provides a menu driven means of setting default
options in executable programs, including ZCNFG itself. It
does this with the help of a configuration file unique to each
target program. For example, the configuration file for
ZCNFG is ZCNFG.CFG and that for FF24.COM is FF24.CFG.

The code in ZCNFG parses the command line to deter-
mine what file is to be configured, and which .CFG file to
use. It performs the initialization functions required, and
provides for an EXIT routine which is the one point at which
the program returns control to the operating system. A few
lines showing ZCNFG commands at the bottom of the menu
display are maintained by code in ZCNFG, rather than by

data in the .CFG file.

A. E. (Al) Hawley started out as a Physical Chemist with a side line love of
electronics when it was still analog. He helped develop printed circuit technology,
and contributed to several early space and satellite projects. His computer experience
started with a Dartmouth Time-Share system in BASIC, FORTRAN, and ALGOL.
His first assembly language program was the REVAS disassembler, written for a
home-brew clone of the Altair computer. As a member of the ZCPR3 team, he helped
develop ZCPR33 and became sysop of Z-Node #2. He has contributed to many of the
ZCPR utilities, and written several. He is author of the ZMAC assembler, ZML

linker, and the popular ZCNFG utility.

The Computer Journal / #52

The .CFG file contains four kinds of
data for each menu:

1. Menu Data Structure: a list of 5
pointers

2. Case Table: a data record for each
configuration item

3. Screen Image: a prototype menu
screen image

4. Help Screen: a block of text ex-
plaining menu items

21

These data structures are described
in detail in ZCNFG.WS, included in
ZCNFG17.LBR. You did get it, didn't
you?

ZCNFG reads the current values of
configurable items from the target file,
uses data from the CFG file to display
them in the menu, allows the user to
_change them and then updates the data
in the target file. After exiting ZCNFG,
the program will now behave in accord
with the newly chosen options because
the data in its configuration area has
been rewritten. This process is much
easier and faster than making the same
changes with a debugger or file
patcher.

Figure 1 shows a typical configura-

Figure 1.
A Typical Configuration Menu

FFP CONFIGURATION MENU
Drives which may be searched by FF. Type drive letter to toggle.

ABCDEFGHIJEKLMNOP
YYYY

R) Return number of files found in register number 10

§) include System files in the search ? NO
T) Terminator following DIR/DU for found files is >
V) View console screen with Paging enabled? YES
W) auto-Wildcarding in the search argument? YES
0) Limit default drives to logged-in ones? NO
1) display drive # headers for found files? NO
2) Use NDR to control search? YES

3) Wheel control? YES 4) NDR for wheel user? NO

ZCNPG INSTALLATION CONTROL
X or Esc =Save changes & eXit Q,"C =Quit with no changes saved

tion menu screen. The user types the
character associated with one of the

/ or ? =Explain Options > or .
Which choice?

=Next Menu < or , =Previous Menu

items on the menu. If that item has a

YES/NO choice, then the current value is toggled and redis-
played. If, like item R), a numeric value is required a prompt
will appear asking for input of that value. The prompt may
indicate the allowable range of values; only values within
that range will be accepted. An explanation of the function of
each configuration choice may be seen by pressing the ? or /
key.

form of comments in which each line starts with a semicolon.
It is ignored by the assembler; if you leave it out you are only
cheating yourself (or others) of some information.

Quantities used by the assembler and linker defined here
are Constants, Public Symbols, and External Symbols. The
assembler does not care about the order in which these
symbols are declared, as long as the statements themselves
are correct. You will note, however, in
the ZCNFG source code, the

;jconfiguration block for THIS program.

CNFGID: DB ‘ZCNFG' :ID string, null terminated
DS 4,0

ALTUSR: DB «1 ;=1 = msearch default user

jadditional configuration items go here

Listing 1.
PROGRAM CODE
ICNPG: JP BEGIN
£ 3MARK: DB ‘ZIENV/ jldentifies program as ZCPR3x utility
DB 1 jexternal environment
Z3ENV: DW 0 ;this address set by ZIINS or ZCPR33/4
DW ZCNFG ;compatible with type 4 enviroment

;max 8 char plus null terminator

REQUEST statements which name
libraries like Z3LIB, SYSLIB, and
others. The order in which these
statements occurs is important! The
linker searches those libraries in the
order in which they are named. These
.request statements are a substitute for
including the library names in the
linker command tail. ZMAC, M80, and
the SLR assemblers recognize the
.request statement; others may not, in
which case such statements must be

Functional Organization
An AL program is usually organized as shown in figure 2.
This arrangement, though common, is certainly not manda-
tory. Experience has shown that the program header should
occur first in the source file, and that it is convenient to put
most of the data items at the end of the file. A program like
ZCNFG which is expected to be executable after assembly/
link must observe certain conventions at the start of the code
in order to be compatible with the operating system. Like-
wise, the position of the block of configuration data is predi-
cated on the use of ZCNFG or on convenience when using a
debugger to set default values.
At the very start of a program is the Program Header. This
header is in two basic parts: textual in-

removed and the libraries included in
the linkers list. If you get the order wrong the linker will
complain to you about ‘undefined symbols’ or unresolved
externals.

Constants used by the assembler are defined by EQU
statements. Such statements might, for example, define AS-
ClI constants like CR and LF. This is a convenient place to
define version number and version date. Other constants de-
fined this way in ZCNFG are standard system addresses like
the targets of the WB and BDOS jumps in page 0 and the
system buffers (FCB and TBUF) in page 0. For ZCNFG, the
offsets to certain important data in the target program are
defined this way.

Symbols which are to be shared with other program mod-
ules are declared PUBLIC; those which the current program

formation that identifies the program

to the programmer, and definition of Listing 2. STARTUP

quantities to be used by the assembler

and linker. BEGIN: 1D (STACK) , 5P ;save system stack pointer
The textual information takes the o 8P, STACK saet up local stack

The Computer Journal / #52

needs from some other module are declared EXTernal. The
assembler places PUBLIC symbols and their address value

in the REL file. It also places EXT sym-
bols in the REL file along with infor-
mation about where in the current
module each symbol is used. The
linker, after it knows the values for all
the PUBLIC symbols for all the mod-
‘ules being linked, puts these values in
the appropriate EXT locations. For each
PUBLIC symbol in the current module
there may be many EXT declarations in
other modules. Similarly, for each EXT
symbol in the current module there
must be a matching PUBLIC symbol in
one of the other modules.

The program header is also a good
place to define macros that will be
used in the program. ZCNFG defines
three such macros in this section. Mac-
ros do not produce code at this point;
actual code is only produced when the
macro is named later on in the pro-
gram as an instruction.

When programs get complex, the
definitions section can get large
enough to be an inconvenience in edit-
ing and reading the source file. You
can make things appear a little simpler
by transferring as much of this section
as you like to a separate file, then in-
cluding it in the assembly source with
a MACLIB or INCLUDE statement. For
example, if all the header except the
opening comment lines of ZCNFG had
been removed and placed in a file
called ZCNFGHDR.LIB, then the fol-
lowing statement would take its place
in the source file:

INCLUDE ZCNFGHDR

Assembly language code, as you
will have observed already, includes a
great deal of excruciating detail which
for most people interferes with com-
prehension of the main program flow
and functions. The INCLUDE provides
a way of ‘hiding’ such detail. Many
HLLs also provide the same facility,
and for the same reason! The assembler
doesn’t care which way you choose;
the code produced is the same either
way.

Program Code

Most program code starts with a JP
instruction whose target is the actual
start of program related code. This
strategy permits convenient inclusion
of a data area at the beginning of the
program. If a program is intended to
be a Z-system utility, it must start with
the standard ZCPR header. If it is in-

The Computer Journal / #52

tended to be configured using all the facility of ZCNFG,
there must be an immediately following block of header and

Figure 2.
PROGRAM STRUCTURE

PROGRAM HEADER
Program comments - Name, Author, Date, Purpose, References
Program definitions (<variable> EQU <value>)
External declarations (in Z3LIB, SYSLIB, etc.)
Public declarations

PROGRAM CODE (see listing 1.)
JP START (or RST 0, DW START or RET, DW START)
Z34 ENV Structure
Confiquration Block

STARTUP (see listing 2.)
Check for 280 cpu, exit with message if not.
Save SP and set local stack.

ENVIRONMENT INITIALIZATION (see listing 3.)
Identify OS parameters of importance to the program
0S version - CP/M 2 or 37 ZRDOS? 2SDOS? Z3IPLUS? ..etc.
CCP identification - CP/M or ZCPR? Which version of ZCPR?
Is DateStamping Available? Which kind? (DS, ZSDOS, CPM+)
Is a Real Time Clock available (other than DS, %ZSDOS, CPM+)?
Initialize the ZCPR and VLIB Environment if appropriate.
Error Exit if OS support is inadequate

HELP (see listing 3.)
Parse CL for help reguest.
Display HELP screen if required by a CALL to a Print_Help routine
Return to 08 by a jump to PROGRAM EXIT if help wae printed,
Else continue with ...

PROGRAM INITIALIZATION (smee listing 3.)
Copy configuration data fram the CFG block to a data bhuffer or
final destination.
Parse command line for options and update those in cfg data buffer.
Allocate memory usage
Initialize buffers and data values
Initialize FCBs
Open input file(s) if appropriate
Open output file(s) if appropriate

MAIN PROGRAM (see listing 4.)
Here is the place for your program to “do it’s thing”.

PROGRAM EXIT
close any open files
relog current directory if appropriate
Restore any changed 0§ parameters
Restore callere stack pointer from saved value
exit via RET if CCP has not been overwritten,
else exit via JP 0 or RST 0.

SUBROUTINES

Print_Help is a called routine so that it can be invoked
from anywhere in the program without aborting to the O0S.

Initialization routines are conveniently placed here
and called from the initialization section to avoid
cluttering up the main flow of the program.

Special file handling routines

Screen management routines

Low level functions like data format conversion routines

BDOS function routines

DATA (Initialized)
Messages
Screen Images
File Control Blocks
Initialized variables

DATA (Uninitialized)
Stack space
Callers stack pointer
Copy of configuration data
Uninitialized variables
Buffers

23

data for use by ZCNFG. CFG files do not start with a JP
instruction because when assembled they are data files and
are not executable. In fact, they start with a RST 0 instruction
which simply executes a warm boot and return to the CCP.
This protects the file from inadvertent execution. See Listing
1 for an example.

HELP routine determines that a help screen is not appropri-
ate it simply returns; otherwise, the help screen is printed
and the program is terminated by a jump to the main exit
routine (its name in ZCNFG is QUIT:) which restores the SP
and returns control to the CCP.

The second initialization section comprises the calls to
PGMINI, FILINIT, and SCR_LD.

Listing 3.

B HELP & INITIALIZATION
CALL INIT ;set current du, Test for 23
1D DE, SIGNON
CALL TYPLIN
CALL HELP ;provide help if requested & quit
CALL PGMINI :1Get file spec from FCB, open file

;abort with message if bad file spec

CALL FILINIT ;identify & load the overlay file
CALL SCR_LD ;load screen image(s)

PGMINIT performs a number of
housekeeping tasks, as outlined in fig-
ure 2. Here, the target filespec is deter-
mined and the file is opened for read-
ing. The default name for the CFG file
is defined if it isn’t present on the com-
mand line.

FILINIT reads the first page of the
target program. If it's a ZCPR34 type 4
program, then a second read is per-

Startup

This is, apart from the initial jump, the beginning of the
executable code in the program. In ZCNFG, the label at this
point is BEGIN:, and the initial jump instruction is JP BEGIN.
If you are concerned about the possibility of your program
being executed on a CPU that doesn’t support the code in
the program (i.e. Z80 code and an 8080 CPU), then here is the
place for code that identifies the CPU. If the wrong CPU is
present, then the code must immediately exit. An error mes-
sage is appropriate. The code up to this point must use only
instructions supported by both CPUs (8080 code in this case).
Remember, we are talking about the instructions in machine
language generated, not the assembler mnemonics used! For
example, a JP instruction will execute

formed to get the real first page (256
bytes) of the program where the configuration data resides.
This data is loaded into a 256 byte buffer named TGTBUF. It
then looks at offset 10Dh in the configuration page for the
name of a CFG file. FILINIT selects the first CFG filespec
from the following prioritized list:

1. the second argument in the command tail
2. the name (if any) from the target configuration page
3. the default defined in PGMINIT

The CFG file is loaded into memory starting at the first
unallocated location above ZCNFG. The address of the start
of this free memory is stored in a variable labeled OVRLAY..

properly on both CPUs but a JR in-
struction will only be recognized by
the Z80. Several public domain pro-
grams use this kind of test; ZCNFG
does not.

Listing 4.

We are now (almost) ready to start SETOFT: ;:31‘1' ;;cx(.:) i Cie:‘;r:?e“

. . ’ IMAGE Haes 1-"‘398
computing. First, we have to make CALL TYPLIN ;display the screen
sure the Stack Pointer is being properly D A, (23MSGF)
managed. This one item is probably re- OR A - 7ZCPRI present?

; JR Z,NOT
sponsible for more system crashes than cALL AT ;cursor positioning if 23
. ’
all others combined! When your pro- ATPRPT: DB 19,1 ;prompt near screen bottom
gram starts executing, the stack cur- NOT123: 1D DE, PRMPTO ;i-> prompt line(s)
CALL TYPLIN ;display user prompt

rently assigned is that of the program
(usually the CCP) that called it. That
stack may or may not have enough
room to support the requirements of

your program. If it is too small, your ﬁm ‘zjé:sr::mp ;;a;en:pgsu;zt

program is guaranteed to crash the sys- CALL ISPRINT ;printable character?

tem. If you prefer not to play russian %-L f{f,cogs'mL fe:m 1‘;;1“

roulette, do like ZCNFG does at the L maem e ret to hers if no exit

first opportunity; save the SP. Define a IR C,GETINP ;on bad cmd, repeat prompt & retry
local stack within the program. Listing IR SETOPT jredisplay screen & prompt after update

MATN PROGRAM

;select & set options interactively
;Thie is a loop whose exit is one of the cases

;jget user input. Make changes as requested, update the
;screen image and the target configuration block.
GETINP: CALL CIN

;wait for & get user input

2 shows an example.

Help and Initialization
Two initialization sections occur in ZCNFG. The first is
the CALL INIT instruction. INIT installs the current version
number and date in the signon message, then sets a flag if
ZCPR3/33/34 is available, This portion of the initialization
provides information for the following signon message dis-
play and the call to the program HELP function. When the

24

This location is also labeled $MEMRY:. When ZCNFG was
assembled and linked, the linker stored the location of free
memory there. The label ‘SMEMRY' is reserved for this use by
most modern linkers. The other label for this location,
OVRLAY, refers to the same quantity and is used for seman-
tic and debugging convenience.

See Assembler Programming, page 56

The Computer Journal / #52

The NZCOM IOP

A Background Clock Display

By Terry Hazen

introduction
I've always wanted to have a background clock display
available on my terminal. While I was working on the RSX
version of the HP14 integer RPN calculator, Joe Wright com-
mented that it would really make more sense to do a calcula-
tor as an IOP. I hadn’t really thought much about IOPs be-
fore. My Ampro BIOS didn’t support IOPs and I hadn’t seen
much written about them. Since NZCOM makes it so easy to
create an operating system that can include an IOP, I thought
it would be fun to learn more about them by adapting HP14
as an IOP calculator. I did (see HP14.LBR, on your favorite Z-
node), and I liked it so well I decided to try integrating a
background clock display into the operating system as an
10P module.
In this first of two articles, I'll present CLKIOP, a
background NZCOM IOP clock display module. Next time
I'll present IOPLDR, a general-purpose

The RSX

The RSX (Resident System Extension) is a structure that is
loaded under the CCP and protected from being overwritten
by warm boots. The RSX can be easily loaded or removed to
provide specific functions on a temporary or semi-permanent
basis and can be made relatively large if required. Since an
RSX is loaded below the protected CCP, however, the avail-
able TPA space is reduced by the size of the RSX plus the size
of the CCP. The extra amount of space an RSX takes can
make it relatively unattractive for more permanent uses in
systems that are short on TPA.

Bridger Mitchell covers the details of the standard
Plu*Perfect CP/M 2.2 RSX structure in his Advanced CP/M
column in TCJ 34. Al Hawley describes ZREMOTE, a practi-
cal RSX application, in his Getting Started in Assembly Lan-
guage column in TCJ 50.

NZCOM IOP module loader that is
combined with an [OP REL module
and some module-specific routines to
create a stand-alone COM file that will
load, control and remove the IOP |
module. We'll use it to create the
stand-alone IOP clock display utility
IOPCLK.COM.

Before we look at the IOP clock,
though, let’s take a quick look at the

Figure 1.

Tracing an NZCOM BIOS I/O Call
+==> CBIOS Jump Table--> CBIOS I/O Routine
+-|--> I0P Input Jump Table--> (Intercepts)--> IOP Output Jump Table-—+

j +-—--NZBIOS Auxillary IOP Jump Table < +
#--———-NZBIOS Main Jump Table <-——--—-— —

Applications Program BIOS I/0O Call—-=+

two most common ways of extending

the CP/M operating system, the RSX and the IOP. Both RSX
and IOP modules are used to extend the CP/M operating
system in various ways. They can both intercept and modify
BDOS or BIOS functions and even provide new BDOS or
BIOS functions.

The IOP
The IOP (Input/Output Package) is another way to extend
the CP/M system. In contrast to the RSX, an IOP module is
dynamically loaded into an IOP buffer in high memory and
reduces the available TPA space only by the size of the IOP
buffer itself. It works by intercepting
and modifying BIOS 1/0O calls. Its size

Terry Hazen has a background in analog electronic and mechanical engineering.
He is currently a product design consultant, specializing in medical electronic sys-
tems. He encountered his first computer in the 1960°s and got very frustrated
trying to write small punched-card batch-processed ALGOL programs. He got his
first Z80 computer in 1982 and has been pursuing 7280 hardware and software
projects ever since. His company, n/SYSTEMS, produces the MDISK 1 megabyte
add-on RAM disk for Ampro LB computers. MDISK also provides the Ampro with
bank-switching capabilities for operating system expansion. Terry enjoys designing
and building varied types of hardware and software projects, not all of them com-
puter-related. His recent software projects include the HP and HPC RPN calcula-
tors and the REMIND appointment reminder utility as well as upgrades to his
SCAN text file viewing utility and ZP file/disk/memory record patcher. He may be
reached by voice at (408)354-7188 or by message on Ladera Z-node #2. His address

is 21460 Bear Creek Road, Los Gatos, CA 95030.

The Computer Journal / #52

is limited to the currently defined size
of the IOP buffer, although with
NZCOM, that may be easily changed
as required.

The standard IOP structure pro-
vides two jump tables to make it easy
to intercept and modify of BIOS /0
calls (Figure 1.) Calls are passed from
the main NZBIOS jump table to the
IOP input jump table, which directs
them to the IOP output jump table,
which in turn directs them back to an
auxiliary NZBIOS IOP jump table,
which directs them to the CBIOS main
jump table, where they are finally

25

passed on to the actual working routines in the CBIOS.
Whew! Intercepting a BIOS 1/0 call in the IOP module is
easy. You only have to change the call’s target address in
the IOP input jump table to point to a local IOP interception
routine.

The standard IOP structure also has several additional
entry points to optional custom routines that can provide
other 1/0 services in a standard way:

~ The STATUS routine at IOP+0 can be used to tell the

calling program information about the current IOP

module.

The SELECT routine at IOP+3 can be used to assign
physical to logical devices or to deselect the current
I0P module.

The NAMER routine at IOP+6 can return a pointer
to the name of the IOP module.

The IOPINIT routine at IOP+9 is always called by
the loader during the loading process and performs all
required IOP initiation.

The NEWIO routine at IOP+21h can be designed to
install new 1/0 drivers.

Rick Conn covers the original IOP structure and his in-
tended uses for each of these IOP routines in ‘ZCPR3 The
Manual’ (New York Zoetrope, 1985). p212ff.

In NZCOM, Joe Wright extended the original IOP con-
cept to include the IOP module as a preprocessor for BIOS
1/0 calls and designed a new standard IOP data structure
to make the IOP easier to use. He also extended the stan-
dard IOP structure to support several more optional but
useful 1/0 routines especially designed for I/ O redirection:

COPEN at IOP+24h and CCLOSE at IOP+27h can be
used to open and close a file specified as the CON: disk
file.

LOPEN at IOP+2Ah and LCLOSE at IOP+2Dh can
be used to open and close a file specified as the LST:
disk file.

These routines can be designed to control files used by
IOP 1/0 redirection packages such as Alpha Systems’
NuKey, BPRINTer and RECORDer.

The IOP Clock

A good background clock display IOP routine should
run constantly in the background, updating a date and time
display somewhere on the terminal screen while keeping
out of the way of foreground application utilities. But
where should the clock display go? I first tried putting it in
the upper right corner of the screen display area and imme-
diately ran into problems because it took so long to con-
stantly save and restore the current cursor position. It also
turns out that GETCUR, the VLIB routine to report the cur-
rent cursor position, only works with one type of terminal
and isn’t a general routine. For example, it doesn’t work at
all with ANSI terminals. Applications programs also
bumped the clock display off the screen from time to time
and it often ended up being overlaid on a part of the appli-
cations program display screen. All in all, it wasn't very
satisfactory. Close, but no cigar.

Then I made the discovery that all my terminals had
some form of host computer message field on the top line
of the display, just above the regular display area. As it
turned out, the message field proved to be an excellent
place for a clock display. On the minus side, not all older
terminals have message fields. Also, since each terminal

Listing 1
; Module
Author
Date:

Versio

Equate

e Ne W N we %o we we we

bell equ
on equ

H

; We need one library routine:

.
1

ni:

Note: This IOP module conforms to Joe Wright'’s Standard
Z-System I/O Package structure, version 4.0, May 4, 1989.

request syslib
axt

CLKIOP
Terry Hazen
03/22/91
1.0

07
0ffh

ma2he

H- o w5 me N e me we we

op:

cons:

The following jumpe and package ID are a fixed data
structure and cannot be changed if this package is to
work with standard loaders and SHOW programs:

I0P Input Jump Table

ip
jp
ip
ip

ip
ip
ip
jp
ip
ip
ip

; Optional

~e e ws

db ‘Z3IOP' ; NZCOM IOP ID {IOP+30h)
db ‘IOPCIK10’ ; Package name (8 bytes)(IOP+35h)
IOP Output Jump Table. ; (IOP+3Dh)

.
’
.
’
.
H
.
’
.
’
.
7

r

const:
conin:
conout
lists
punch:
reader:
listst:

ip
ip
ip
ip
ip

I/0 package identification

The targets of the following seven jumps are filled in by
the IOPINIT routine, always called by any IOP loader, to
point to the NZBIOS jump table.

Jp
ip
ip
ip
ip
ip
ip

zero ; Internal Status Routine (IOP+00h)
select ; Device Select Routine (IOP403h)
zero ; Device Name Routine {IOP+06h)
jopinit ; Initialize IOP (10P+09h)
const ; Console Input Status (IOP+0Ch)
iconin ; Console Input Character (IOP+0Fh)
conout ; Console Output Character(IOP+12h)
list ; List Output Charactexr (IOP+15h)
punch ; Punch Output Character (IOP+18h)
reader ; Reader Input Character (IOP+1Ah)
listst ; List Output Statue (IOP+1Eh)
routines (not used by IOPCLK)
zero ; I/0 Driver Installation (IOP+21h)
zero : Open CON: Disk File {I0P424h)
zero ; Close CON: Disk File (IOP+27h)
zero 3 Open LST: Disk File (IOP+2Ah)
zero ; Close LST: Diek File {IOP+2Dh)

000000

N WS NE WE WS We WS e W W We WE We

The preceding jumps and package ID MUST remain in their
present positions to maintain the integrity of the IOP
structure.

The main body of the IO Package starts here. Code and
structure from here on is free-form and may be moved
about as you wish:

IOPCLK configuration area. (IOP+52h)

Configuration data is normally copied from the

The Computer Journal / #52

configuration area of the IOPCIX.COM loader program. If
assembling this code to a REL file and using NICOM or
JETLDR to load it, configure this area directly in the
source code:

~. me we Ne W

Jbeep: db 0 ; ON=gound console bell as hourly alam
seconds :db 0 ; ON=include seconds in clock display
time: db 0 ; ON=use 12hr time

ssclk: dw 0 ; AMddress of 3Z8DO6 clock routine

1

; String sent to terminal to place a message at a specific;
; point in a terminal message field. The special character
; used to terminate the terminal message is located at

; TERMEND. (0 terminations are for PSTR)

i

term: ds 8 ; Prefix for terminal msg -~ 8 bytes max
db 0 ; Termination

H

termend:db 0 ; Terminal message termination character

i

spaces: db 0 ; Number of spaces to the beginning of

; the clock display

The clock display buffer is a part of the terminal
message. ‘mo’, ‘da’, etc, are filler bytes to show date
and time locations. They are replaced with the current
date and time bytes when the clock display is updated at
UPDATM.

e me Wme we we we we

dmos db ‘mo/ !
ddas db ‘da/’
dyzx: db ‘yx
dhr: db ‘hre’
dmis db ‘mi’
colon: db ‘s’ ; Set to 0 to end with minutes
dee: db ‘se’
db 0 ; Termination

Intercept CONIN

w % we we

iconin: call const ; Check for pending character

or a
jr nz,conin ; Yes, get it right away
i
, call clock ;
We have time, update clock display
jr iconin ; Check for another character
i
clock: 1d de,yr ; DB=clock buffer
1d hl, (zsclk) ; Hi=address of ZSDOE clock driver
1d c,0 ; Set read clock function
call jphl ; Read clock intoour clock buffer
H
1d bc,se ; Point to current seconds
1d hl,cse ; Point to old seconds
i
chktim: call secchk ; Check for change (min or sec)
ret 7 Quit if no change

r

; Update clock display buffer after initial check to see if
; seconds have changed, starting with minutes (or hours) and
; working backwards toward years. Convert each changed byte
; from BCD in the clock buffer to ASCII in the display

; buffer, quitting at the first unchanged date/time byte.

i
|

pdatm: 1d de,dmi ; Point to display buffer minutes
call check ; Update if changed minutes
jr z,display ; Quit if no change

i

updath: 1d de,dhr ; Point to display buffer hour
call check ; Update if changed hour
ir z,display ; Quit if no change

i
call hour ; Do change of hour housekeeping
1a de,dda ; Point to display buffer day
call check ; Update if changed day
ir 1,display ; Quit if no change

H
1d de,dmo ; Point to display buffer month

The Computer Journal / #52

requires a different terminal control string to identify such a
message and the required string is not included in the
ZCPR3 Z3TCAP, you have to do a little homework with
your terminal manual to find the correct sequences.

On a WYSE30/50, for example, to place the clock display
in the right corner of the host terminal message field, we
need to send the following string (including the 28 spaces):

BSC,'F? mm/dd/yy hhiem:ss’,CR

To do the same thing on a WYSE75, we need to send the
following string (including the 22 spaces):

BSC, ' [>+\ ma/dd/yy hhimmsss\’
Reading the Clock

To keep things as universal as possible, I decided to use
the ZDDOS/ZSDOS clock as my time and date source. Since
the IOP clock is essentially a part of the BIOS, we can’t take
the easy way out and use the standard ZSDOS call to read
the clock. While we could take advantage of ZSDOS support
for re-entrant BDOS calls, this would require us to save and
restore a 147 byte DOS data area, which would slow us
down accordingly.

Luckily, there is an easier and faster way. Since ZSDOS
stores the address of the ZSDOS clock driver at DOS+16h,
we can easily find the address of the clock driver when the
IOP clock is first loaded and save it in the IOP. We can then
save time, trouble and IOP space by reading the ZSDOS
clock directly through the clock driver. This sneaky tech-
nique also allows the IOP clock to continue working even if
another DOS is later loaded, as long as the clock driver
remains undisturbed.

IOP Clock Operation

CLKIOP (Listing 1), the IOP clock module, works by in-
tercepting BIOS CONIN requests at ICONIN. We need to
minimize the time we spend reading the clock and updating
the clock display to avoid getting in the way of foreground
application programs, so our first act is to check the console
status to see if the BIOS already has a character waiting. If it
does, we get it and return with it immediately. Only if there
is no character waiting do we pause to read the clock and
update the clock display. This allows the IOP clock to run in
the background and take second place to applications utili-
ties being run in the foreground.

Each time we update the clock display, we save a copy of
the updated date/time buffer to help us minimize the time
it takes us to update the display. We compare each newly-
read date/time byte with the previously updated date/time
byte as we step through the process of translating the BCD
date and time bytes we read from the clock to the ASCII
bytes we need in the clock display string buffer. Since sec-
onds change most often, we can shorten the translation
process by starting with seconds and working backwards
toward years. As soon as we find an unchanged byte, we
know the update is complete.

When we've completed updating our clock display
buffer, we send the terminal control string to the terminal,
which will direct it to place the following message in the
message display field. Then we send the number of space
characters required to position the clock display where we
want it in the field, the clock display string, and the special

message field termination character. Finally, we return to

27

call check ; Update if changed month
jr 2,display ; Quit if no change
i
1d de,dyr Point to display buffer year

H
call check ; Update if changed year,
; else fall thru

Update terminal clock display

~ wa we

display:ld hl,term ; Point to terminal message
. ; line prefix
call pstr ; Send it
H
14 a,(spaces) ; Number of spaces required
or a ; before clock display
jr z,clkdisp ; No spaces required
i
1d b,a ; Set counter
1d a,’ !

-

’
splp: call cout Display spaces

~

dinz splp
H
clkdisp:ld hl,dmo ; Point to clock buffer
call pstr ; Display it
i
1d a, (termend) ; Fall thrutosendcharacter
Subroutines:

Display character in A on conaole

e e e we we e

cout: push hl ; Save us from the BIOS...
push be
id c,a ; BIOS wants character in C
call conout ; Display it
pPop be
pop hl
ret

;
; Display O-terminated string pointed to by HL
H

pstr: 1d a,(hl) ; Get character
inc hl ; Point to next
or a ; Done?
ret z ; Yes, quit

H
call cout ; Display character
jr pstr ; Do next

Call (HL)
phl: Jp {hl)

sStart with check for changed seconds

we we e L we we e

secchk: 1ld de,dse + Point to display seconds
jx check0

?

; Start with check for changed minutes

i

ainchk: 1ld de,dmi. ; Point to display minutes

H
3 Check for changed time/date bytes
;

check: dec hl ; Point to next old time byte
dec bec ; Point to next time byte

i

check0: 1d a, (bc) ; Get byte
cp (hl) ; Compare and set flags
ret z ; Return if no change

i
1d (hl),a 3 Else update old buffer byte
ip maZhc ; And update display buffer

Change of hour, so check if hourly alarm is desired

- e e

hour: 1d a,(beep) ; Hourly alarm?

or a
1d a,bell ; Send beep if so
call nz,cout

Format clock display correctly for 12 or 24 hour time

“. we we

1d a,(time) ; Get time flag
or a
ret z ; 24hr, 8o we’'re done
H
1d a, (hr) ; Get bcd hour
sub 12h
ir Z,noon ; Noon
jr c,morn 7 Morning
i
daa ; Decimal adjust time to bcd
jr condun
i
morn: add a,l2h
jr nz,condun ; Not Midnight
;
noon: add a,12h
condun: 1d de,dhr
call ma2hc ; Convert display to 12hr
i
1d a, (dhr) ; Check for leading 0
cp lol
ret nz ; No, we'’re done
H
1d a,’ ' ; Replace leading 0 with a space
ld (dhr),a
ret

Device Select Routine

Entry: B=0FFH - Remove IOP
Bxit : A=0, Z if bad command, A<>0, NZ if ok

~e we we we wa W

select: inc b

jr z,remove ; Turn clock off (remove)
i
; Any IOP functions not implemented return ZERO to the
caller.

’

zero: xor a ; Any call here returns 2
ret

;

; Remove IOP

i

remove: ld hl,cons our input jump table

i
1d de,const ; Our output jump table
1d b,7 ; Patch 7 jumps

Replace jump target at HI+1 with DE,
increment HL and DE by 3.

F = we e me

arget: inc hl ; Point to our jump target
1d (hl),e ; Move low order
inc hl ; Point to high order
1d (hl),d ; Move it
inc hl ; Point to next IOP input jump
inc de ; Point to next IOP output jump
inc de
ine de

djnz target Loop to do next

~

.
!

nzero: or 0ffh
ret

Any call here returns N2

~e

IOPINIT is one-time initialization code that is always
called by the IOP loader when the IOP is first loaded and
never again. The space usedby IOPINIT can be reused as
buffer space if required.

The seven character IO jumpe in the NZBIOS jump table are

vectored to ocur IOP Input Jump Table. The NZBIOS has a
jump table similar to our IOP Output Jump Table whose
targets godirectly to the BIOS character I0 routines. The
address of this table is maintained at NZBIOS+l. The IOP
is ‘installed’ by pointing the jumps in our IOP Output

NS N we me we we e we A W we W

The Computer Journal / #52

ICONIN to check the BIOS for another character and if none
is waiting, we continue to loop, reading and updating the
clock display in our spare time, until a character is returned
by the BIOS. We then return to the calling program with the
character that was originally requested.

Loading the 10P Clock Module
You can customize CLKIOP’s configuration buffer, in-
cluding the terminal control string and the address for the

"ZSDOS clock driver, assemble the completed IOP clock mod-

ule to a REL file and load it into the IOP buffer with NZCOM
or JETLDR. It is just over 400 bytes long and fits nicely into a
‘standard’ 12 record (1.5k) NZIOP buffer with plenty of el-
bow room left over for future ‘enhancements’.

Next time, however, we’ll look at IOPLDR, a small gen-
eral-purpose IOP loader REL module that does most of the
standard work that it takes to load, control and remove an
IOP module. We'll see how IOPLDR and a few routines spe-
cific to the IOP clock module can be combined to create

Jump Table to the NZBIOS table. If noIOPactionisto

i
; take place, our IOP Input Jump Table vectors directly
; through the IOP Output Jump Table to the NZBIOS jump table.
’
iopinit:la a,(seconds) ; Include seconds?
or a
jr nz,init ; Yes
7
xor a ; Patch display to end
; with minutes
1d (colon),a
1d hl,minchk ; Patch addr of change
; checking routine
1d (chktim+l),hl
'
1d a,0c3h ; Don’t recheck minutes
1d (updatm) ,a
1d hl,updath ; Skip to checking hours
1d (updatm+l),hl

H
; Initialize IOP output jump table

’
init: 1d hl, (1) ; BIOS+3

dec hl ; BIOS+2

1d d, (hl)

dec hl ; BIOS+1

1d e, (hl) s BIOS table

id hl,const ; Our IOP output jump table
!

1d b,7 ; Seven jumps

jr target

.
’

; Clock buffers

!

yr: db 0 ; Year
mo? db 0 ; Month
da: db o] ; Day
hr: db 0 ; Hour
mis db 0 ; Minute
se: db 0 ; Second

Copy of clock buffer after last display update. Fill
character must be non-bcd character to ensure complete
display conversion at startup.

~ % me ws we

oyr: db on ; Last updated year
aso: db on ; «..Month
oda: db on ;s ...Day
ohr; db on i +ssHour
omi: db on 3 ...Minute
ose: db on ; +..Second
end

H
: End of CLKIOP.Z80

The Computer Journal / #52

IOPCLK.COM, a stand-alone utility to install and remove the
IOP clock display module. IOPCLK also allows you to use
ZCNFG to configure the operation of the final IOP clock
module.

Removing the IOPCLK IOP Module

An IOP module can be removed by simply loading
another IOP module over top of it. Alternatively,
IOPCLK.COM (when we have created it!) will be able to
‘remove’ the clock IOP module when the ‘R’ option is
selected by calling the IOP SELECT routine with B=0FFh,
causing the SELECT routine to restore the original IOP input
jump table so that all jumps point directly to the output jump
table. This produces a ‘dummy’ IOP module that simply
passes on all BIOS calls without interception and effectively
deselects the IOP.

Interaction With Applications Programs

Application programs usually get input characters from
the user in one of two ways. When programs want to quickly
check to see if the user has entered a character and continue
with their work if nothing is waiting, they call the BIOS
CONST routine. If no character is waiting, the program can
then continue merrily on its way. If there is a waiting charac-
ter, it can be retrieved by calling the BIOS CONIN routine.
The SYSLIB character input routine CONDIN provides a
simple method of doing this, returning immediately if no
character is waiting and returning with the character if one
has been entered.

The IOP clock works best with foreground applications
utilities that get characters from the BIOS using BIOS CONIN
requests. This method is typically used when a program can
sit and wait until a character has been entered. The SYSLIB
character input routine CIN works this way, waiting until a
character has been entered and then returning with it. Most
interactive utilities, including WordStar, ZPATCH, ZP, ZDB,
IMP, SCAN24, et cetera, use CONIN calls for most character
input. The IOP clock display is constantly updated in the
background when these programs are operating.

Instead of calling CONIN and waiting for a character to
be returned, however, some utilities try to do the job of the
BIOS themselves, continually calling CONST until a charac-
ter is detected and only requesting the character from
CONIN after they already know that a character has been
entered. On a call to CONIN, the IOP clock module sees that
a character is waiting and won’t stop to update the IOP clock
display. As a result, the IOP clock module can’t read the
clock and update its display during operation of programs
that get their character input this way. Some examples are
dBase-1I, ZDE, QL, XOX, VIEW and VTYPE.

Other utilities, including assemblers, linkers, and copy
and directory utilities, don’t check for console input at all for
long periods of time. The IOP clock display will not be
updated when console input is not being requested. The
display will be updated again, however, at the next console
input request when there is no character already waiting,.

Why then, you might ask, don't we just make life easier
by intercepting CONST calls to read the clock and update the
IOP clock display? The reason is that CONST is called much
more often than CONIN and it just slows things down too
much to read the clock that often. Or at least my Ampro
BIOS clock, which is pretty fast. Reading the clock during
each CONST call drastically reduces the apparent terminal

29

Bridger Mitchell’s last Advanced CP/M column (TGJ 45)
described a Z80 implementation of the Boyer-Moore string
search algorithm. He illustrated the traditional method of
creating a displacement table to determine the skip values
| required during the search process. However, there is a
simpler and faster way. Since at each node we try to match
the pattern to the text starting with the rightmost pattern
character and working from right to left, we can derive each
skip value as a by-product of the search process itself.

For example, if we load A with the text character we are
searching for in the pattern, HL, with the pointer to the end
of the pattern and BC with the length of the pattern, we can
search the pattern from right to left with the Z80 instruction
CPDR. If CPDR returns a NZ flag, we have no match and
must use a skip value equal to the length of the pattern. If
we have a match, BC returns with an offset from the begin-
ning, or left character, of the pattern to the match position.
The skip value for the next match attempt is simply the
offset of the match position from the right end of the pat-

tern, or:
skip = pattern_length - BC - 1

Using one of Bridger’s examples:
\.

Boyer-Moore String Search Algorithm
By Terry Hazen

1234567890
everywhare
where

Text:
Pattern:

Here, A would contain ‘i, HL would point to the right
hand ‘e’ in the pattern ‘where’, and BC would contain 5, the
length of the pattern. The CPDR instruction will quit when
it matches the ‘h’ in ‘where’ and return BC=1. The next skip
value would thenbe 5-1-1=3:

1234567859%0¢0
everywheras
where |
-~>where

Text:
Pattern:
7 Slide pattern right 3 bytes

While the use of the CPDR instruction illustrates how the
search process itself can generate the skip value for the next
match attempt, its actual usefulness in matching real text
characters in the pattern is limited, as you are limited to
exact case matches. More flexible ‘discrete’ code that allows
you to match characters ignoring case and allowing wild-
card pattern characters is more complicated and slightly
slower, but does the same job. @

J

baud rate and slows down screen display updates dramati-

cally and unacceptably.

Bells and Whistles

To avoid obscuring the main points, I didn’t discuss all of
the features you will find in the CLKIOP clock display code.
For example, you can use configure the IOP clock module to
sound an hourly alarm. It can also be configured to display
time as hrs:mins with the display updated every minute, or
as hrsimins:secs with its display updated every second and
can be set for 12 or 24 hour time display.

You can find the full source and documentation for
CLKIOP and the IOP clock display utility, IOPCLK.COM, in
IOPCLK10.LBR on your favorite Z-Node. I hope IOPCLK
helps illustrate another way in which an IOP can be used
even if you can’t use the IOP clock display because you don’t
have a clock, your terminal doesn’t have a host terminal mes-
sage field or you use a different BDOS. Maybe you have
some ideas of your own for new IOP’s.

Next time we’ll look at IOPLDR and use it to create the
stand-alone IOP clock display utility IOPCLK.COM. @

MOVING?

Don’t leave us behind!

Send Change of Address six weeks prior to move.

///WWWWWWWW

Promotional
and

Technical Writing
for Electronics Marketing

Kk ok ok ok Kk

Technical Articles for Publication
Advertising Concepts and Copy
Product and Service Brochures
Press Releases |
Speeches and Lectures
Editing/Rewrite Service
Consulting

* ok ok Kk Kk

Bruce Morgen
P.O. Box 2781
Warminster, PA 18974

215-443-9031
(Voice, Data by Appointment)

T T

WW\WWWW\WW\

S

WWWWWWWW//

The Computer Journal / #52

Servos and the F68HC11

By Matt Mercaldo

The servo is a wonderful device that can be used for mo-
tion control. These small units have high turning torque as
well as high holding torque. A limitation of servos is that
most do not turn a full three hundred and sixty de-

wave. The timer interrupt service routine is ~SERVO.
NEXT_SERVO is a pointer to a piece of code that knows
what part of the wave to build next. There are only two parts

grees. In most small robotic applications this is not a
factor. The following code and article will describe
how to turn a servo. The servo used is a Futaba 59601.
I have to thank the manager of a little hobby shop
nearby for the donation of this unit from his “junk
box”.

—

Onward
Servos work in a curious manner in that a control

-~ —— a—

Primitive Servo Controller)
By Matthew Mercaldo)
41 South Park Street)
Oconamowoc, Wiaconsin 53066)

Servo used is the FUTABA §3601 mini servo)

This module will establish 256 locations for the
revolution of the servo)

Down Load the Startup code and 68HCll assembler before)
downloading this module)

signal determines what position should be taken next. HEX

This signal is a regular sixteen millisecond wave
whose duty cycle determines the servo’s position. The
position is determined from a one to two millisecond
window or duty cycle. Listing 1 is the code for the
servo. The constant BIAS is an offset from the start of
the sixteen millisecond wave cycle. The constant STEP
tells how many system E clock ticks for a “step”.

The wave in figure 1 is what the signal looks like to

run a servo. From point 1. to point 4. is sixteen milli- 15
'seconds. Point 1. to point 2. is the BIAS. Point 2. to

point 3. is the window of movement. In the following
code, this section (point 2 to point 3) is divided into
256 steps.

A look at the Code ;

The timers in a 68HC11 are based on the two
megahertz E clock. A full 65535 ticks is 32 millisec-
onds. 32720 ticks are roughly half of that and consti-
tute a 16 millisecond FRAME in the code. The wave
table is generated by MAKE_STEP_TABLE. The table
has 256 elements. Each element is composed of two,
sixteen bit numbers. The first number is a count of
how many ticks of the E clock make up the high part

B000 CONSTANT PORTA

DECIMAL

OC1P CONSTANT SIGNAL BIT (PORT A bit 7 is the signal bit)
(connect the white lead of the servo to PORTA bit 7, the

(black lead to ground and the red lead to 5 volts)

768 CONSTANT BIAS

t PS (ps — count) STEP * BIAS + ;
s FRAME (— count) 32720 ; (16 milliseconds)
: MAKE_STEP_TABLE (— ; compiles table into the dictionary)

(create the wave/ position table)
CREATE POSITION_TABLE

VARIABLE NEXT_SERVO {(A vector which points to the next)

VARIABLE POSITION
VARIABLE ~“SERVO UP (used for defered access to the up and)

VARIABLE ~"SERVO_DN

Bias is the amount of time)
required to not make the serve)
chatter at the low positions.)
There will be 13 system B clock)
ticks per “step” of servo.)

CONSTANT STEP

—~ o~~~

{ ; the table is 16bit UP | 16bit DOWN)
(; for 256 count)
256 0 DO I PSS, FRAME I PS - , LOOP

MAKE_STEP_TABLE

{ routine to fire)
(offset to the waveform pair)

(down routines)

of the wave while the second number is a count of
how many ticks of the E clock make up the low part of the

to the wave that can be built; the up part and the down part.
~SERVO_UP sets the signal line bit

Matthew Mercaldo is employed by a huge firm. With a small group, he develops
software tools for field service engineers to do their thing. At 4:30 or 5:00 p.m.,
when the whistle blows, his thoughts race toward the edge. He dreams of articulated table
six legged walking beasts, electronic brains that can fend for themselves, and the ‘
stuff of “ULS. Robots and Mechanical Men.” Someday he dreams of running power
out to his garage, and with his wife and a select group of friends, opening his own
automoton shop - and thus partially fulfilling his childhood dreams. (Plutonium,
Tritium and the like are still not available for public “consumption”; but seeing the
moons of Jupiter would be spectacular in one’s own starcruiser!)

The Computer Journal / #52

high then gets the appropriate count
from a combination of the position
table and the POSITION offset into the
and finally sets the
NEXT_SERVO vector to point to
~SERVO_DN. The only difference be-
tween ~SERVO_UP and ~SERVO_DN
is that ~SERVO_UP accesses the up
part of the wave table element and sets

3

CODE EI (— ;enable all interrupts)
ASSEMBLER

CLI NEXT * JMP
END-CODB

CODE DI (— ;disable all interrupts)

ASSEMBLER
SEI NEXT ~ JMP
END--CODE
] CREATE -SERVO (— ; Servo interrupt routine)
ASSEMBLER

OC1F # A 1DA TFIG1 “ A STA (Acknowledge Interrupt)
NEXT_SERVO " LDX 0 ,X JMP { execute appropriate)
(routine)

CREATE ~SERVO_UP (— ; makes bit go high at appropriate time)
ASSEMBLER
PORTA SIGNAL_BIT ON { toggle bit on)
POSITION * LDD POSITION_TABLE # ADDD XGDX
(set timer for)

0 ,X LDD 'TCNT “ ADDD TOC1l * STD (next time)
~*SERVO_DN “ LDX NEXT SERVO “ STX (set vector for)
(next time)
RTI
-SERVO_UP ~"SERVO_UP 1!
CREATE ~SERVO DN (— ; makes bit go low at appropriate time)

ASSEMBLER
PORTA SIGNAL_BIT OFF (toggle bit off })
POSITION “ LDD POSITION_TABLE # ADDD XGDX
2 ,X IDD TCNT “ ADDD TOC1 “ STD
~“SERVO_UP " IDX NEXT SERVO " STX
RTI

~SERVO_DN -“SERVO_DN |

s POSITION SET (n — ; set position to be an offset into)
(the wave table)
DUP 255 » IF DROP 255 THEN
4 * POSITION !
’

HEX

t SERVO_INIT (— ;set servo timer up)
00 PORTA Ci (ocl pin starts low)
80 B026 Ci
00 B0O20 C!
~SERVO >TOC1 VECTOR
~SERVO_UP NEXT_SERVO !
0 POSITION_SET

.
’

+ SERVO_START (p —)
DI
SERVO_INIT
TMSK1 C@ OCLF OR TMSK1 C!
34

/ AWANNNNWN

the signal bit high while ~SERVO_DN accesses the down
part of the wave table element and sets the signal bit
low. Together ~SERVO_UP and ~SERVO_DN create the
servo control signal. The POSITION is set with the word
POSITION_SET. Since each element in the table is four
bytes long, the entered number is multiplied by four.
The reason why each element in the wave table is four
bytes long is because the 68HC11 counters are sixteen
bits or two bytes, and there are two of them.
SERVO_START turns off interrupts, initializes the timers
and port A for its use as the signal port. Port A bit 7 is
the signal output line. The servo will go to position 0
once activated. To move the servo first type
SERVO_START <CR> to initialize the servo timers as de-
scribed above, then use the POSITION_SET command
by typing (for example) 50 POSITION_SET <CR>.

Servos are a tight, compact, powerful little actuators.
In future articles we will use them to build wondrous
robotic toys. I hope you have as much fun experiment-
ing with servos as I did in researching this article. Once
again have fun with Forth!@®

a D
Do You Have

Something To Tell?

What have you been cooking up on
your project bench?

Want to talk about it?

TCJ welcomes articles on hardware
interfacing, control applications and
other “real-world” projects!

T

PO Box 12, S. Plainfield
New Jersey 07080-0012

\& Z

Baseball provides an escape. Furthermore, there is no other place in society that I know of which the
perimeter of play and the rules are clearly defined and known to everyone—in which justice is absolutely
equal and sure. Three strikes, you’re out. I don’t care if you hire Edward Bennet Williams to defend you;
three strikes, you’re still out. Baseball is an island of stability on an unstable world.

—Bill Veeck

The Computer Journal / #52

Z-System Corner
Programming for Compatibility: Z-System and CP/M

By Jay Sage

As noted in the sidebar to my columns, I serve as the Z-
System sysop on GEnie. My principal duty is to conduct a
Real Time Conference (RTC) at 10 pm Eastern time on the
first Wednesday of each month. These sessions are group
chats, and they give GEnie callers a chance to ask questions
and make comments. When [accepted this position with
GEnie, I had expected that many Z-System enthusiasts would
take advantage of the opportunity to discuss Z-System issues
with me, but it has not turned out that way. Relatively few
people show up for these sessions.

They have not been without value, however, and one of
the most valuable took place this past June. David
Goodenough, the author of QTERM (the program for Z80
computers that is currently the number-one subject of
interest), was in attendance as usual, and he and I got into a
discussion about the lack of sharing and commonality
between the Z-System community and the community of

vanilla CP/M users.

The Issue of Compatibility

The discussion started when 1 mentioned that we were
beginning work on a replacement for BYE. David asked if it
would work under CP/M, and I replied that it would abso-
lutely require a Z-System. David found this very annoying
and complained about the way the Z community ignores the
large part of the 8-bit computing world that, for whatever
reason, sticks with standard CP/M.

In the case of BYE, I do not accept David’s criticism. The
main motivation for writing a new version of BYE is that
many of the functions and a large part of the code in BYE is
completely unnecessary on a Z-System. For example, Z-Sys-
tems are inherently secure and do not need BYE to provide

security. Furthermore, the externally accessible multiple
command line makes it possible for BYE to have the operat-
ing system perform functions that are currently included in
the BYE code.

A BYE for Z-Systems could be significantly smaller and
more flexible than a BYE for CP/M, and we would not want
to carry the overhead demanded by CP/M. David’s response
to that was to question, then, why he should carry any over-
head for Z-System in the programs he writes (since he never
uses any form of Z-System).

I think the difference is that BYE is a piece of resident

Compatibility, like motherhood, is aimost
good by definitionl

code, something that becomes part of the operating system of
the computer. As such, it is much more important for the
code to be as short as possible. In an application or utility
program, however, the importance of keeping code short is
much less, and the importance of compatibility and wide-
ranging applicability is much greater. With respect to those
kinds of programs I think that David is absolutely right, and
we should be making a greater effort at compatibility. That is
the issue I will address here.

Why Should We Want Compatibility?
Compatibility, like motherhood, is almost good by defini-
tion! Obviously, a great deal of creative effort is going into Z-
System development, and it is best if the fruits of that effort
can be shared by the largest number of people. But there are
also some very specific reasons why we in the Z community
should be interested in compatibility

with CP/M.

Jay Sage has been an avid ZCPR proponent since the very first version appeared.
He is best known as the author of the latest versions 3.3 and 3.4 of the ZCPR com-
mand processor, his ARUNZ alias processor and ZFILER, a “point-and-shoot” shell.

When Echelon announced its plan to set up a network of remote access computer
systems fo support ZCPR3, Jay volunteered immediately. He has been running Z-
Node #3 for more than five years and can be reached there electronically at 617-965-
7259 (MABOS on PC Pursuit, 8796 on Starlink, pw=DDT). He can also be reached
by voice at 617-965-3552 (between 11 p.m. and midnight is a good time to find him
at home) or by mail at 1435 Centre Street, Newton Centre, MA 02159. Jay is now
the Z-System sysop for the GEnie CP/M Roundtable and can be contacted as
JAY.SAGE via GEnie mail, or chatted with live at the Wednesday real-time confer-
ences (10 p.m. Eastern time).

In real life, Jay is a physicist at MIT, where is tries to invent devices and circuits
that use analog computation to solve problems in signal, image and information
processing. His recent interests include artificial neural networks and supercon-
ducting electronics. He can be reached at work via Internet as SAGE@QLL.MIT.EDU.

The Computer Journal / #52

One reason that affects Z users di-
rectly is that with NZCOM and
Z3PLUS we are not locked into Z-Sys-
tem, and we are much more likely to
drop back to CP/M to perform some
tasks. Sometimes we are going to use
an application that is a real memory
hog. At other times we have to use a
program that cannot operate under Z-
System, such as Uniform (for working
with foreign-format diskettes). Uni-
form works by introducing patches di-
rectly into the operating system code,
and it will work, therefore, only when
the machine is running the exact ver-
sion of CP/M for which it was written.

33

(I have made perfunctory attempts at finding a way to adapt Listing 2

Uniform to NZCOM, but so far | hav?.not succeeded.) It This ie macro code that defines an ENV and
would be very convenient if our familiar Z-System tools TCAP for a CP/M system.

would still work after we dropped back to CP/M. And we

certainly don’t want them causing a system crash if we in- 7 PROGRAM: CPMENV.LIB
. ; AUTHOR: Jay Sage
voke them by accident under CP/M. : DATE: June 16, 1991

A second advantage, and one that David Goodenough
raised to encourage me to pursue greater compatibility, is
that people still using vanilla CP/M would get a taste of
what Z-System can offer. Under CP/M, Z-System tools
would require an onerous patching process. If more CP/M cpumhz equ 4 ; CPU speed in MHz

~

; System configuration information (**+** USER EDIT #*#+++)

; Operating system addresses and sizes.

Listing 1. biospg equ 0dlh ; Page where BIOS starts

Source code for the test program that

incorporates an internal ENV/TCAP for when the program bios equ 100h * biospg

.is run under standard CP/M. doss equ 28 ; Size of DOS in records
dos equ bios - 80h * doss

; PROGRAM: ZTEST.Z80 ccps equ 16 ; Size of CCP in records

; AUTHOR: Jay Sage ccp equ dos - 80h * ccpe

; DATE: June 16, 1991

; Information about drives and user areas available
This is a program to test the technique of including

~ o~

an internal ENV and TCAP. H PONMILXJIHGFEDCBA
drvec equ 0000000000001111B
; ====we-e-- External References highdsk equ ‘D’ ; Letter of highest drive
maxdisk equ highdsk - '@’ ; Highest drive (A=l)
maclib cpmenv. 1ib maxuser equ 31 ; Highest user arsa
.request vlib,syslib0 ; Data about console screen and printers
extrn z3dvinit,cls,at ; VLIB routines crtwid equ 80 ; Width of CRT screen
extrn vprint crtlen aqu 24 ; Number of lines on
acreen
; =======--- Standard Z-System program header crtuse equ crtlen =2 ; Number of lines to use
; To make the code work traneparently with CP/M, the prtwid equ 80 ; Printer width
header prtlen equ 66 ; Printer total length
; is initialized to point to the internal ENV. When the prtuse equ prtlen - 8 ; Printer lines to use
; program is run under IZCPR33 or later, the address of the prtff equ 1 ; Formfeed flag (1 if
; external Z-System ENV will be poked into the code by the used)
; command processor at run time.
jp start !
; Here is a macro to define and internal ENV for use
db *Z3ENV” ; Signature ; under CP/M.
db 1 ; ENV type
envptr:: cpienv mAacro
dw intenv ; Pointer to ENV
ip 0 ; Dummy jump address
; Material for use with 2CNFG can be included here.
db ‘Z3ENV’ ; Environment ID
§ ~we=—=—--—- Internal ENV and TCAP placed here db 81h ; ENV type
intenv: cpmenv ; Use macro dw 0 ; external path
db] ; elements in path
j =====————- Actual Program Code
dw] ; RCP address
start: db 0 ; number of records in RCP
1d hl, (envptr) ; Initialize
call z3vinit 3 LOTS MORE OMITTED
call cle ; Clear screen dw intenv ; ZCPR3 Environment Descriptor
call at ; Position cursor db 2 3 number of records in ENV
db 10,10
call vprint ; Display a message ; LOTS MORE ZERO VALUES
db ‘Thie ie *
db 1 ; Highlighting on db cpumhz ; Processor Speed in MHz
db ‘highlighted’
db 2 ; Highlighting off db maxdisk ; maximum disk
db ¢ videol’ db maxuser ; maximum user
db 0
call at ; Put cursor at bottom db 1 ; 1=0K to accept DU, O=not OK
db 22,1
db 0,0
ret
end db crtwid ; width of CRT

34 The Computer Journal / #52

users realized the kinds of programs that would become
available to them directly, with no need for patching, they
would be more likely to upgrade to Z-System.

What Does Compatibility Demand?

What do we mean when we talk about Z-System pro-
grams being compatible with CP/M, and what coding re-
quirements would such compatibility impose?

As Bridger Mitchell pointed out long ago in his Advanced
CP/M column that used to appear in TCJ (and which we all
hope will reappear in the future [Ed.: | second that]), all
programs should examine the environment in which they

All programs should examine the environment
in which they have been called on to operate.
Then, they must either adapt properly to the
environment or terminate gracefully.

have been called on to operate. Then, they must either adapt
properly to the environment or terminate gracefully with an
appropriate message.

Two basic things that programs might have to determine
before they attempt to perform their function are: (1) the kind
of CPU—8080/ 8085, Z80, 64180, Z280; and (2) the kind of op-
erating system—CP/M-22, CP/M-Plus, Z-System. In the
case of a Z-System, it might be further necessary to deter-
mine the version of ZCPR3 (3.0, 3.3, 3.4) and the type of
implementation (manual, NZCOM, Z3PLUS).

The Z-System is a far more varied object than CP/M, and
one’s determination of the environment has only begun
when a Z-System has been detected. The simplest form of Z-
System, I suppose, would have only one module: the ENV
descriptor. The other modules and facilities in Z-System’s
long list are, I believe, all optional: named directory register
(NDR), multiple command line, shell stack, flow control
package (FCP), message buffer, command search path, and
soon.

Because of the range of Z-System implementations that
are possible, it is already incumbent on Z programs to make
sure that the facilities they expect or depend on are, in fact,
available. Most of the routines in the assembly language pro-
gramming libraries used to write Z programs (ie, VLIB,
Z3LIB, and SYSLIB) already return error codes when the fa-
cility requested is not available. All Z programs should check
these return codes and proceed in appropriate ways when
things don’t work out as intended.

What should be expect from Z programs when they are
run under CP/M? At the very least, as I mentioned earlier, Z
programs should absolutely be safe under CP/M. We might
settle for a simple return to the CP/M command prompt, but
ideally, programs should report that they could not run and
why. It is quite unnerving to invoke a program and just get
the command prompt back.

A higher level of compatibility would be for the Z pro-
gram to perform those of its functions that make sense under
CP/M. When running under Z-System the program might
recognize named directories and return information in Z-Sys-
tem message buffer registers; under CP/M, only DU: direc-
tory references could be handled, and information that
would normally be recorded in the message buffer would be
discarded.

The highest level of compatibility, which we will explore
in more detail later, is to have the program perform its full

The Computer Journal / #52

range of operations under CP/M by including an internal
ENV module (including the TCAP component, which tells
how to operate the console terminal). In this way, the pro-
gram would think it was running under Z-System even when
actually running under CP/M.

I have not had time to think through all these issues fully,
and my views may be refined with further thought and input
from others. At the moment, I can see only one fundamental
difference between a minimum capability Z-System and a
CP/M system. That is the difference in command processors,
and specifically the more sophisticated parsing of the com-
mand line that ZCPR3 performs.

The first two tokens on the command line are treated as
file references, and the default file control blocks (FCBs) at
5CH and 6CH are filled in with information about those two
files. With ZCPR3, directory references of the form DU: and,
if named directories are implemented, DIR: are recognized.
Besides placing the proper drive letter into the FCB, the user
number for the file is placed into a special location.

Under CP/M, these operations will not take place, and an
internal ENV will not help. In fact, the internal ENV, which
will make the program think that it is running under Z-Sys-
tem, could cause problems. To make programs that rely on
the default FCB data work, we would have to add significant
additional code to the program. First, we would have to de-
tect the use of the internal ENV (this would be easy), and
then we would have to provide alternative code for manually

What should be expect from Z programs
when they are run under CP/M? At the very
least, they should absolutely be safe.

parsing the filename tokens into the FCBs. While this might
represent a significant extra burden in the code, I would rec-
ommend that we do this in the future for those programs
that can afford the extra code and whose functionality is not
already available in a standard CP/M program.

Where Does Compatibility Stand Now?

David Goodenough was under the impression Z-System
programmers totally ignore CP/M and that nearly all Z-Sys-
tem programs will not work under CP/M. This impression is
not really fair.

First of all, a great many Z programs—perhaps even the
majority—could not possibly run under CP/M because their
function would make no sense under CP/M. Here are a few
examples:

(1) PATH or ZPATH: configures the Z-System
search path for COM files;

(2) PWD: reports the names and associated drive/
users of currently defined named directories;

(3) SALIAS: full-screen tool for defining stand-alone
multiple-<command-line aliases;

(4) ZEX: a sophisticated batch processor that feeds
commands to the multiple command line and uses the
message buffer for control communication;

(5) ADIR: displays the names of alias scripts defined
for the ARUNZ extended command processor;

(6) LSH: a full-screen history shell and command-
line editor.

[t was interesting to see what happened when these pro-
grams were operated under CP/M (which I could do easily

35

db crtlen ; number of lines on CRT

db crtuse ; number of lines of text on CRT
aw drvec

db 0

db prtwid ; data for printer

db prtlen

db prtuse

db prtff

db 0,0,0,0

dw ccp

db ccps

dw dos

db doss

dw bios

db ‘SH ‘ ; shell variable filename
db ‘VAR' ; shell variable filetype
db ‘ ' ; filename 1

db ‘ ! ; filetype 1

; MORE SIMILAR DATA
s Fill unused space with nulls

rept 128-($~intenv)

db 0

endm
; End of Environment Descriptor — beginning of TCAP
; ***** USER EDIT #*#*%*%
; Extended Termcap Data
BSC EQU 27 ; ASCII escape character
; I have adopted the convention that a terminal name is
; terminated with a space character, therefore no spaces
; within the name. Also that the terminal name is unique
; in the firet eight characters.
NZTCAP: DB ‘WYSE-50D * ; Terminal name (13 bytes)
The Graphice section is no longer fixed so we must

provides an offset to it. One byte is sufficient for a
two-record TCAP.

~. e we

DB GOELD-NZTCAP ; Offset to GOELD

Bit 7 of Bl4 indicates the new Extended TCAP. Bits 6-0
are undefined.

~ .-

DB 100000008 ; Extended TCAP
; B15 b0 Standout 0 = dim, 1 = inverse
; B15 bl Power Up Delay 0 = None, 1 = l0-sec delay
; Bl5 b2 No Wrap 0 = Line Wrap, 1 = No Wrap
; B15 b3 No Scroll 0 = Scroll, 1 = No Scroll
: B1S b4 ANSI 0 = ASCII, 1 = ANSI

DB 00000111B

DB ‘K=" ; Cursor up

DB Jr-rer ; Cursor down

DB ‘L'='@’ ; Cursor right

DB ‘HI-'@/ 3 Cursor left

DB 00 ; Clear-screen delay

DB 00 ; Cursor movement delay

DB 00 ; Clear~to-end-of-line
delay

; Strings start here.

on my Televideo 803H, which runs NZCOM). ZPATH po-
litely reported that there was no ZCPR3 path, and PWD an-
nounced that there was no NDR (named directory register)
allocated. ZEX gave a more general message indicating that
the facilities it required for operation were not available.
These responses were all acceptable and reasonable, and they
meet the requirements [outlined above.

ADIR did not do so well. It tried to run and ended up
accessing a bogus drive, from which I had to recover by
pressing control-C. SALIAS, to my surprise, did even worse.
Although one time it gave me the message “TCAP?”, indicat-
ing that it was checking the TCAP for adequate terminal sup-
port, all the other times it crashed and locked up the system.
So did LSH. Obviously, these programs are not checking
properly that the memory referenced by the embedded ENV

DB ESC,’+',0 ; Clear-acreen string

DB ESC, '=%+ %+ ‘,0 ; Cursor movement string
DB BESC,'T’,0 ; Clear-to—end-of-line
DB Esc,’)’,0 ; Standout-on string

DB ESC,'(',0 ; Standout-end string

DB o] ; Terminal init satring
DB ESC, ('’ ,0‘ ; Terminal deinit string

; Extensions to Standard 2Z3TCAP

DB ESC,'R’,0 ; Line Delete
DB ESC,'E’,0 s+ Line Insert
DB ESC,’'Y’,0 ; Clear-to-end-of-screen

; Set Attribute strings once again included.

DB ESC,’'G’,0 ; Set Attributes
DB ‘0248’ ,0 ; Attributes

; These two allow reading the Terminal’s screen.

DB ESC,'?',0
DB ESC,’'6°,0

Read current cursor pos
Read line until cursor

~ .

s Graphics start here.
GOELD: DB 0 ; on/Off Delay

; Graphics strings offset from Delay value.

DB ESC,'H’,2,0 4 Graphics mode On
DB ESC,’H’,3,0 ; Graphics mode Off
DB ESC,’‘0’,0 ; Cursor Off
DB Bs¢,’’1’,0 3 Cursor On

; Graphics Characters

DB 2 ; Upper left corner
DB '3 ; Upper right corner
DB 1’ ; Lower left corner
DB ‘5 ; Lower right corner
DB el ; Horizontal line
DB ‘6’ ; Vertical line

DB 7 ; Full bleock

DB ! ; Hashed block

DB ‘0 ; Upper intersect
DB It ; Lower intersect
DB - ; Mid intersect

DB ‘9! ; Right intersect
DB 4 ; left intexrsect

; Fill unused space with nulls
REPT 128-($~NZTCAP)
DB 0
ENDM

; End of N3TCAPD

endm

The Computer Journal / #52

pointer actually contains a Z-System environment (ENV)
module; they must just be plowing on ahead.

I tried a lot of other programs of this sort, and in almost
all cases they failed in an acceptable way. Many gave mes-
sages; others simply returned to the command prompt with-
out having done anything (at least nothing apparent, so I
assume they did not do any harm).

Not all Z-System programs manipulate or take specific
advantage of Z-System facilities; There are many Z programs
that perform functions that make perfect sense under stan-
dard CP/M. Some authors have taken great care to ensure
that their programs will work in both environments. Hal
Bower’s COPY program (derived from MCOPY) that comes
with the ZSDOS disk-operating-system replacement is a
good example of this. Here are some other examples of pro-
grams whose function makes some sense under CP/M:

(1) FF: FindFile searches all drives and user areas for
specified file names;

(2) DIFF: performs a byte-by-byte comparison of
two files;

(3) CD: changes the logged drive/user;

(4) LBREXT: extracts member files from LBR files
and optionally uncompresses them;

(5) LPUT: builds a new LBR file from the files
named on the command line.

How did these fare under CP/M? Although FF performs
a function that would be useful under standard CP/M, it is
coded to make mandatory use of Z-System features, and it
delivers an error message when one attempts to use it under
CP/M.

This is a good example of a program that probably should
be upgraded to CP/M compatibility. Obviously, FF would
not recognize or report named directories, and it would have
to assume that all user areas are available. As for the drives it

should search, it would have to be configured manually, and
I don’t see why ZCNFG, the program that is currently used
under Z-System to configure it, could not perform this func-
tion under CP/M, too.

DIFF, like FF, gives an error message when it is invoked
under CP/M (in fact, it requires ZCPR33 or later). DIFF
makes extensive use of Z-System facilities. It determines the
dimensions of the terminal display, stores certain results of
the file comparison in Z-System registers, and performs ad-
vanced error-recovery operations when the program encoun-
ters certain conditions. DIFF also extracts and compares the
date stamps for the two files. Thus, although the essential
function of DIFF would be useful under CP/M, it might be
difficult to make the code work without those Z facilities. It
would be worth looking into, I think.

CD (Change Directory) is primarily intended to log into
another drive and user area using a named-directory refer-
ence and to run a special alias when it gets there. Under CP/
M it currently appears to do nothing but return to the com-
mand prompt. It should be made to give an error message. It
might even be reasonable for it to accept DU: syntax to log
into the indicated area under CP/M.

The functions of LBREXT are totally appropriate for CP/
M, and there is no reason why it should not work perfectly
under CP/M. It almost does. The following command works
fine:

LBREXT B3:LIBRARY Cl:EXTRACT.FIL

As is perhaps to be expected, it does have problems if one
tries to use a named directory reference. The one real mistake
1 noticed in the code is that it is coded to determine its own
name (for use in the help screen) by looking in the Z-System
external FCB. Under CP/M, garbage appears. Apparently,
the code does not verify that the system has an external FCB.

Listing 3.
The essential material in the patch for
installing an internal environment intc DU3S.

3 PROGRAM: DU-CPM.Z280
; AUTHOR: Jay Sage
; DATE: June 15, 1991

This code is a patch that can be used with DU35S to embed
an internal environment descriptor and TCAP so that DU3S
can be used under standard CP/M (2.2 or 3) as well as 3-
—System. To use this patch, DU35.280 must be assembled as
usual to a REL file and then linked with the data segment
(DSEG) moved 100H higher in memory to provide a place to
insert the ENV. The appropriate linker commands with the
version-4 libraries are as follows:

SLRNK DU35/N,/P:100,/D:2ES0,DU35,
VLIB/S,33L1B/S,SYSLIBO/S,/E
or
ZML DU35,VLIB/,Z3LIB/,SYSLIBO/ D2ES0

This linking leaves the space from 2D50H to 2E4FH free for
an internal ENV and TCAP, which are defined below in this
patch. As distributed, this patch is set up with an ENV
for my Televideo 803H computer and a TCAP for a Wyse-50
terminal (this works on the Televideo, too). You should
edit the file so that it describes your eystem (search for
the sections marked with *#*#+*+ USER EDIT ####*#~,

Once the patch has been edited, assemble it to a HEX file
and then use MLOAD (or MYLOAD) to apply the overlay:

W WE NI WME WE We e We WME W We We W We WE W WO W We We W We Ne W W we

MLOAD DU=DU35 .COM,DU-CPM. HEX

An alternative way to install the TCAP is to extract a
binary TCAP from one of the distribution filee (such as
33TCAP.TCP, which is a library collection of TCAPs)

Then, after installingthe DU-CPM patch, use a debugger or
file editor to install the desired TCAP into DU.COM at
address 2DDOH (on top of the one installed by this patch).

e we wa we we s

: System configuration information (**#*%* USER EDIT *#*%*)
; OMITTED MATERIAL, SAME AS THE CONFIGURATION
; EQUATES IN CPMENV.LIB

intenv equ 02d50h ; Place in DU35 for the internal ENV

i
; Install ENV address at beginning of code
org 109h ; Place for the ENV address

dw intenv ; Internal ENV address

; Install the dummy ENV in the DU35 code
org intenv

; OMITTED MATERIAL SAME AS THE MACRO CODE
s IN CPMENV.LIB

: End of NITCAPD

The Computer Journal / #52

37

This is a mistake even for operation under Z-System.

LPUT, which also performs a function that is entirely ap-
propriate for CP/M, misbehaves seriously under CP/M. It
tries to work, but it gets its user areas confused. Since it
always assumes user 0 for the LBR file, even when one is
given explicitly in the command, my guess is that it is using
the default FCB for the first command line token. Second, for
the list of files to be put into the library, LPUT assumes user
0 unless one is given explicitly, in which case it is recognized
correctly. This suggests that it has not determined properly
what its logged-in (default) user area is. Small changes in the
code could probably correct these problems.

I probably should have clarified one thing earlier in this

I can imagine why someone would still
today refuse to use Z-System (it does take
up some memory), but it is completely
beyond me as to why anyone would
continue to use the DRI CP/M-2.2 CCP.

discussion. I have not done these experiments strictly under
CP/M but rather under ZCPR2, and this may have affected
the results. A stripped-down ZCPR2 is the most primitive
system I will consider running. It is a direct, drop-in replace-
ment for the Digital Research command processor; nothing
else in the system changes. I can imagine (albeit with some
difficulty) why someone would still today refuse to use Z-
System (it does take up some memory), but it is completely
beyond me as to why anyone would continue to use the DRI
CP/M-2.2 CCP.

Compatibility Via an Internal Environment

I was so intrigued by the possibility of making Z pro-
grams run under CP/M even when they required full-screen
terminal capabilities that I could not wait to experiment with
some real code. Mind you, this is no small thing. | have been
so busy with other activities that I have done virtually no
code writing for years! My influence on the Z community has
been only as a mentor. This time I just could not wait for
someone else to perform the experiments.

As the subject for my first tests, I chose the disk utility
program, DU3. There were two reasons for this. First, this is
a program whose CP/M counterpart lacks some of the most
useful features of DU3, and I have long wished that it would
work after I dropped down to CP/M. Second, I had just put
up on my Z-Node a new version, DU34, that Gorm Helt-
Hansen of Denmark had sent to me, so I knew I had current
source code to work with.

There are quite a few possible approaches to patching in
an internal ENV. | am going to start by discussing a little test
program that I wrote after I had already succeeded with
DU34 (now DU35). Rather than trying to abstract from the
DU code, it was easier to write a simple demonstration pro-
gram. ZTEST, shown in Listing 1, includes only enough func-
tionality to prove that it works.

The key idea is to place in the code a two-record module
containing the ENV (1 record) and the TCAP (1 record). The
ENV pointer in the program header is initialized to point to
this internal environment. Then, when the program is exe-
cuted under CP/M, that is the ENV that the program will see
and use. On the other hand, when the program is run under
a modern Z-System (ZCPR33 or later), the command proces-

sor will poke the address of the true (external) Z-System
ENV into that pointer, and the program will then see and use
the real environment.

The most difficult part of this project was writing the
CPMENV.LIB code. The ENV part was pretty straightfor-
ward. Almost all the module addresses and lengths are zero!
The part that took some time was the TCAP. I finally located
a good source-code version of the latest TCAP standard and
was able to import it. A condensed version is shown in List-
ing 2.

For patching DUS3, I took a slightly simpler approach that
would not have required modifying the source code at all. In
fact, | did make a few changes to correct some errors I no-
ticed in the version 3.4 code and to make a cosmetic change.
For one thing, the names of some library routines had mis-
takenly shorted to six characters, rendering the code unus-
able with the SLR tools in SLR mode. Using the full names
should be equally acceptable to M80/L80.

The most serious error was the inclusion of a large block
of initialized data near the end of the data segment (DSEG).
This resulted in a COM file substantially larger than neces-
sary, since all the uninitialized data now had to be loaded
into the COM file. I moved that initialized data to the begin-
ning of the DSEG to join the other initialized data. I called the
new version DU35.

Aside from those modifications, which were made for
other reasons, the patching process actually starts with the
same assembled REL file as would have been used to gener-
ate the standard Z-System version of the program. When |
linked it with the libraries (VLIB, Z3LIB, and SYSLIB), | made

A stripped-down ZCPR2 is the most
primitive system | will consider running. It
is a direct, drop-in replacement for the
Digital Research command processor,;
nothing else in the system changes.

note of where the data segment (DSEG) started. It was at
2D48H. To make room for an internal ENV from 2D50H to
2E4FH, I simply relinked the program with the DSEG speci-
fied as 2E50H. Now all I had to do was to patch in the ENV
code.

Initially I did this manually using the command

GET 100 :DU35.COM

to load DU35.COM into memory. Then I used a second GET
command to load an assembled version of the dummy ENV
and TCAP to the proper address:

GET 2D50 :CPMENV.COM

To make sure that the ENV address in this ENV module
was self-consistent, [poked the correct value in at ENV+1BH:

POKE 2Dé6B 50 2D

Next, I had to poke the ENV address into the pointer at
109H. The command was:

POKE 109 50 2D

Now the memory image had the correct code, and I just

The Computer Journal / #52

BYO Assembler, from page 20
is the “while” loop in which the condition is tested at the be-
ginning of the loop, rather than at the end.

In Forth the accepted syntax for this structure is

BEGIN, evaluate cc WHILE, loop code REPEAT,

In practice, any code—not just condition evaluations—
may be inserted between BEGIN, and WHILE,.
. What needs to be assembled is this: WHILE, will as-
semble a conditional jump, on the inverse of cc, to the code
following the REPEAT,. (If the condition code cc is satisfied,
we should “fall through” WHILE, to execute the loop code.)
REPEAT, will assemble an unconditional jump back to BE-
GIN. Or, in terms of existing constructs:

BEGIN, (1) ... cc IF,(2) ... AGAIN, (1) THEN,(2)

Once again, this can be implemented with existing words,
by means of a stack manipulation inside WHILE, to re-ar-
range what jumps are patched by whom:

¢ WHILE, (a cc - a a) IF, SWAP ;
t REPEAT, (a a -) AGAIN, THEN, ;

Again, nesting is freely permitted.

The Forth Definition Header

In most applications, machine code created by a Forth as-
sembler will be put in a CODE word in the Forth dictionary.
This requires giving it an identifying text “name,” and link-
ing it into the dictionary list.

The Forth word CREATE performs these functions for the
programmer. CREATE will parse a word from the input
stream, build a new entry in the dictionary with that name,
and adjust the dictionary pointer to the start of the “defini-
tion field” for this word.

Standard Forth uses the word CODE to distinguish the
start of an assembler definition in the Forth dictionary. In
addition to performing CREATE, the word CODE may set
the assembler environment (vocabulary), and may reset vari-
ables (such as MODE) in the assembler. Some Forths may
also require a “code address” field; this is set by CREATE in
some systems, while others expect CODE to do this.

Special Cases

1. Resident vs. cross-compilation: Up to now, it has been as-
sumed that the machine code is to be assembled into the
dictionary of the machine running the assembler.

For cross-assembly and cross-compilation, code is usually
assembled for the “target” machine into a different area of

memory. This area may or may not have its own dictionary

structure, but it is separate from the “host” machine’s
dictionary.

The most common and straightforward solution is to provide
the host machine with a set of Forth operators to access the
“target” memory space. These are made deliberately analogous
to the normal Forth memory and dictionary operators, and are
usually distinguished by the prefix *T*. The basic set of
operators required is:

TDP target dictionary pointer DP
THERE analogous to HERE, returns TDP
T, target byte append C,

TCO target byte fetch Ce¢

C! target byte store Ct

T target word fetch ¢

T1 target word store 1

Sometimes, instead of using the “T” prefix, these words
will be given identical names but in a different Forth vocabu-
lary. (The vocabulary structure in Forth allows unambiguous
use of the same word name in multiple contexts.) The 6809
assembler in Part 2 assumes this.

2. Compiling to disk: Assembler output can be directed to
disk, rather than to memory. This, too, can be handled by
defining a new set of dictionary, fetch, and store operators.
They can be distinguished with a different prefix (such as
“T" again), or put in a distinct vocabulary.

Note that the “patching” manipulations used in the single-
pass control structures require a randomly-accessible output
medium. This is not a problem with disk, although heavy use
of control structures may result in some inefficient disk ac-
cess.

3. Compiler Security: Some Forth implementations include
a feature known as “compiler security,” which attempts to
catch mismatches of control structures. For example, the
structure

IF, ... cc UNTIL,

would leave the stack balanced (UNTIL, consumes the ad-
dress left by IF,), but would result in nonsense code.

The usual method for checking the match of control struc-
tures is to require the “leading” control word to leave a code
value on the stack, and the “trailing” word to check the stack
for the correct value. For example:

IP, leaves a 1;
THEN, checks for a 1;
ELSE, checks for a 1 and leaves a 1;

BEGIN, leaves a 2;

UNTIL, checks for a 2;

AGAIN, checks for a 2;

WHILE, checks for a 2 and leaves a 3;
REPEAT, checks for a 3.

had to save the file:
:SAVE 100-2E50 DU.COM

I presented the procedure above to illustrate how handy
the Z-System GET, POKE, and transient SAVE.COM pro-
grams can be when doing this kind of work. (The peek com-
mand, P, also came in handy to let me see what I was doing.)
To make the process easier for other people to carry out,
then developed a patch program called DU-CPM.Z80. Ex-
cerpts are shown in Listing 3, where the installation proce-

dure is described.

The Computer Journal / #52

Conclusion

I hope this column will inspire Z program authors to take
a careful look at their programs to see how they can be made
better behaved and more compatible with standard CP/M. 1
hope it will also inspire CP/M programs to think about the
advantages that Z-System offers to many Z80 computer users
and to devote the effort required to allow their CP/M pro-
grams to run effectively under Z-System as well. We will all
benefit by bringing the CP/M and Z-System communities
closer together. @

39

This will detect most mismatches. Additional checks may
be included for the stack imbalance caused by “unmatched”
control words. (The 6809 assembler uses both of these error
checks.)

The cost of compiler security is the increased complexity
of the stack manipulations in such words as ELSE, and
WHILE,. Also, the programmer may wish to alter the order
in which control structures are resolved, by manually re-ar-
ranging the stack; compiler security makes this more diffi-
cult.

4. Labels: Even in the era of structured programming,
some programmers will insist on labels in their assembler
code.

The principal problem with named labels in a Forth as-
sembler definition is that the labels themselves are Forth
words. They are compiled into the dictionary—usually at an
inconvenient point, such as inside the machine code. For ex-
ample:

CODE TEST ... machine code ...
HERE CONSTANT LABELl
.. machine code ...
LABEL1 N3 JP,

will cause the dictionary header for LABEL1—text, links, and
all—to be inserted in the middle of CODE. Several solutions
have been proposed:

a) define labels only “outside” machine code. Occa-
sionally useful, but very restricted.

b) use some predefined storage locations (variables)
to provide “temporary,” or local, labels.

¢) use a separate dictionary space for the labels, e.g,,
as provided by the TRANSIENT scheme [3].

d) use a separate dictionary space for the machine
code. This is common practice for meta-compilation; most
Forth meta-compilers support labels with little difficulty.

5. Table Driven Assemblers: Most Forth assemblers can
handle the profusion of addressing modes and instruction
opcodes by CASE statements and other flow-of-control con-
structs. These may be referred to as “procedural” assemblers.

Some processors, notably the Motorola 68000, have in-
struction and addressing sets so complex as to render the de-
cision trees immense. In such cases, a more “table-driven”
approach may save substantial memory and processor time.

(I avoid such processors. Table driven assemblers are
much more complex to write.)

6. Prefix Assemblers: Sometimes a prefix assembler is un-
avoidable. (One example: I recently translated many K of
Super8 assembler code from the Zilog assembler to a Forth
assembler.) There is a programming “trick” which simulates
a prefix assembler, while using the assembler techniques de-
scribed in this article.

Basically, this trick is to “postpone” execution of the op-
code word, until after the operands have been evaluated.
How can the assembler determine when the operands are
finished? Easy: when the next opcode word is encountered.

So, every opcode word is modified to a) save its own exe-
cution address somewhere, and b) execute the “saved” action
of the previous opcode word. For example:

+ss JP operand ADD operands ...

JP stores its execution address (and the address of its “in-
stance” parameters) in a variable somewhere. Then, the oper-

40

ands are evaluated. ADD will fetch the information saved by
JP, and execute the run-time action of JP. The JP action will
pick up whatever the operands left on the stack. When the JP
action returns, ADD will save its own execution address and
instance parameters, and the process continues. (Of course,
JP would have executed its previous opcode.)

This is confusing. Special care must be taken for the first
and last opcodes in the assembler code. If mode variables are
used, the problem of properly saving and restoring them be-
comes nightmarish. I leave this subject as an exercise for the
advanced student...or for an article of its own.

Conclusion
I've touched upon the common techniques used in Forth
assemblers. Since I believe the second-best way to learn is by
example, in part 2 I will present the full code for the 6809
assembler. Studying a working assembler may give you hints
on writing an assembler of your own.
The best way to learn is by doing!®

References
1. Curley, Charles, Advancing Forth. Unpublished manu-
script (1985).
2. Wasson, Philip, “Transient Definitions,” Forth Dimen-
sions 111/ 6 (Mar-Apr 1982), p.171.

ADDITIONAL SOURCES
" 1. Cassady, John], “8080 Assembler,” Forth Dimensions
I1I/6 (Mar-Apr 1982), pp. 180-181. Noteworthy in that the
entire assembler fits in less than 48 lines of code.

2. Ragsdale, William F., “A FORTH Assembler for the
6502," Dr. Dobb’s Journal #59 (September 1981), pp. 12-24. A
simple illustration of addressing modes.

3. Duncan, Ray, “FORTH 8086 Assembler,” Dr. Dobb’s
Journal #64 (February 1982), pp. 14-18 and 33-46.

4. Perry, Michael A., “A 68000 Forth Assembler,” Dr.
Dobb’s Journal #83 (September 1983), pp. 28-42.

5. Assemblers for the 8080, 8051, 6502, 68HC11, 8086,
80386, 68000, SC32, and Transputer can be downloaded from
the Forth Interest Group (FORTH) conference on GEnie.

@ TCJ On-Line N

Readers and authors are invited to join in dis-
cusslons with their peers in any of three on-line
forums.

* GEnie Forth Interest Group (page 710)

* GEnie CP/M Interest Group (page 685)

* Socrates Z-Node 32

For access to GEnie, set your modem to half
duplex, and call 1-800-638-8369. Upon connec-
tion, enter HHH. At the U#= prompt, enter
XTX99486,GENIE and press RETURN. Have a
credit card or your checking account number
handy.

Or call Socrates Z-Node, at (908) 754-9067.
PC Pursuit users, use the NJNBR outdial. Star-

tLink users, use the 3319 outdial. J

The Computer Journal / #52

Relay International Message Exchange
Forth Conference
Edited by Gary Smith

RIME (Relay International Message Exchange) is a PC-board based network similar to FIDO. The original list F orth was pro-
duced by Bonnie Anthony, sysop of Running Board A—which is RIME central. Hers was only a node list. The Forth conference
‘originates on Jim Wenzel's Grapevine BBS in Little Rock, AR. Jim was able to identify all but a few nodes and affix the phone
number and system operator associated with each. It’s a rather impressive list.
Messages carried on RIME Forth conference are essentially identical to those carried on the GEnie Forth RoundTable and on
UseNet comp.lang forth news feeds. Our apologies for any systems not mentioned.

Abstract BBS ABSTRACT Mark Froese (718) 351-7633
Alpine BBS ALPINE Jason Hills (503) 581-0923
Aguila BBS AQUILA Steve Williams (708) 820-8344
Baudline II BAUDLINE Drew Bartorillo (301) 694-7108
Castle Rock BBS CASROCK Rocco Fili (402) 572-8247
The Computer Forum BBS CFORUM Jim Rhodes (804) 471-3360
Cloud Nine BBS CLDNINE Ed Lucas (713) 859-8195
The San Diego CLIP*BOARD CLIPBORD Ted Blue (619) 427-4664
Club PC BBS CLUBPC Jim Kreyling (804) 357-0357
Computronics Comm Link COMPTRON Ken Hunt (813) 526-1265
The Consultant’s Forum CONFORUM Bill Raines (513) 424-1861
Canada Remote Systems CRS Jud Newell (416) 629-0136
DFW Programmer’'s Exchange DFWPGMR Ric Naff {214) 398-0013
Digital Schoolhouse DIGISCHL Richard Munro (416) 299-7306
The Enchanted Forest BBS ENCHANT David Rockey (904) 377-2001
The Godfather GODFTHR Kathi Webster (813) 289-3314
The Grapevine BBS GRAPEVNE James Wenzel (501) 753-8121
Gwinnett Hospitality GWINNETT Gene Hysner (404) 962-6820
Hallucination BBS HALCNTN Michael Malak (703) 425-5824
the Haven of Rest HAVEN Byran Pike (612) 474-0724
The Holistic BBS HOLISTIC Mike McCarthy (213) 531-3890
Data Central BBS ICcC Doug Scott (317) 543-2000
The Icebox BBS ICEBOX Darren Klein (718) 793-8548
Life Scan Communications LIFESCAN Kelly Tompkins (213) 865~3988
HHDC BBS MEDINFO Peter Booras (904) 221-9425
The Mog-Ur’'s EMS MOGUR Thomas Tcimpidis (818) 366-1238
Moondog MOONDOG Don Barba (718) 692-2498
M.O.R.E. MORE JThomas Howell (401) 849-1874
The Musical Chair MUSICAL Jeff Woods (416) 438-3009
Network East NETEAST Howard Hartman (301) 942-5616
O0.L.E.F.1 OLEF Peter Grain 44-81-882-9808
Programmer’s Palace PALACE Matthew Briggs (703) 866-4452
PDS-SIG BBS PDSSIGI Bob Allen (408) 270-4085
The Pegasus BBS PEGASUS Raymond Clements (502) 684-9855
ST. Pete Programmer’s Exchange PETEXCH Bill Blomgren (813) 527-5666
PGHSouth PCBoard System PGHS Dan Deady (412) 563-5416
ProPC BBS PROPC Robert Malakoff (412) 321-6645
The Punkin Duster BBS PUNKIN David Ludwig (714) 522-3980
PC Rockland BBS ROCKLAND Charlie Innusa (914) 353-2157
The Round Table BBS ROUND Daniel McCoy (215) 678-0818
The Running Board RUNNINGA Bonnie Anthony (301) 229-5623
The Cave THECAVE Roger Lee (408) 259-8078
The Pub BBS THEPUB Jim Fennell (914) 686-8091
The TREE BBS THETREE Frank Fowler (904) 732-0866
Technet At TJHSST TJHSST Kelly Deyoce (703) 941-3572
The Right Place (tm) TRP Roger Sligar (404) 476-2607
The Virginia Connection VIRGIN Tony McClenny (703) 648-1841
Washington PC-Board WASHPCB Mike Keelon (412) 225-9782
The Windows Plus BBS WINDOWS Russell Jackson (501) 968-8431

The Computer Journal / #52

41

YASBEC, from page 7
from pag What’s next

Designing a project like YASBEC is like writing a pro-
gram. There are as many ways to get the job done as there
are designers. Looking back I always see things 1 wish were
done different. Unfortunately you can not simply ‘edit” hard-
ware like software, once the choices are made you must live
with them. Luckily after months of playing with this board I
have found little I would have done differently. But where
do we go from here? Well [currently have photo tools ready
for a backplane and a memory expansion board. But why a
backplane for a single board computer? Because the one with
the most toys when he dies wins! Seriously, while the YAS-
BEC makes a nice system all by itself, it does lend itself to all
sorts of possibilities with a backplane. YASBEC can support
two 512K x 8 static RAM chips, but these chips currently run
around $250 each! Next year they may be affordable but for
now a memory board would be nice with several 128K x 8
chips. The memory board also includes a non-volatile con-
troller and battery for all the RAMs making a nice RAM disk.
And how about video? Wayne and | currently have a proto-
type video board running. It has resolution and colours simi-
lar to VGA but with a RAMDAC to provide 256 x 24 bit
mapped colour. It also has a 256 gray scale real-time frame
grabber. The frame grabber still needs work but results so far
are promising.

Backplane
Figure 6 shows the backplane pin out and driver chips.
The pin out of the backplane was determined largely by the
circuit board layout. While the Eurocard PCB, card cage and
connector are standard the pin out is unique to YASBEC. U7

provides the bi-directional data bus while the other four
74ACT245 chips buffer the address and control lines. Now,
how many hardware gurus noticed something strange?
There are four bi-directional bus drivers hard wired uni-di-
rectional. Why the overkill? Well, I had lots of 245 chips in

surface mount.

Software
Software for the YASBEC is still under development. Be-
sides a standard 2.2 system and BIOS, a banked system is
also currently under way. By the time this is in print we
should have an answer for those people who do not want to
port CP/M themselves. The best place to stay up to date is on
GEnie. [Ed.: There are several topics on YASBEC in the CP/M SIG].

Where do | get one?

The YASBEC is currently available as a semi-populated kit
for CDN$100 plus $10 shipping and handling for Canada
and the USA. Payment by cheque or postal money order,
sorry no credit cards. You can send your order to my address
as given in the biographical paragraph to this article. Included
in the price are the monitor ROM, address decoding PALs,
and all surface mount components soldered to the board.
Not included are the sockets, socketed parts, cables and any
leaded parts (jumpers, connectors, et cetera). Along with the
parts list I have included suggested sources, I'll be glad to
help if you have trouble finding parts. Assembling this sys-
tem should prove itself an interesting project for the true
hacker. Just like the good old days, eh? Anyone interested in
a fully assembled system in a case with power supply, con-
sole and software ready to boot should go buy a PC.@®

vCe
Fi Qo 6 l= ==
<5< S$<45<
edeges Yl
5025 _NM]
NG 1 475 Tinto
“WRIT $c20 ZWAIT
GREQD 5620 “DREGO
. TRESET $C19 TRESET
HDDR_BUS(G:191E>_\ 74ACT246 Ji
] A0 24 _HALT 14 N
‘HHH 1781 Al %24 5T 14 NG
DATA_BUS(B:7)[>—\ - L o2 Az %23 SIENDO)nig ne
B4 Al 572 A1g
BS RS %472 AIB
B5 nb TR
B7wa A7 SAz1 Al6
3! 508 HC
& Jl 3@8 NE
— =3 7N
gapy v
17 A13 Y19 NC
SA17 A12
A
16 Al
1S Ag vee
SA15 AB
T4ACT 246 J1 1
BO f0-2 512 A7
1 aips éﬁnz A6 A1 +5v
B2 p2id C1! AS Ci <5V
B3 f3}2 ALl A4 32«5V
B4 Ra <Ci0 A3 32«5V
B5 A5 SA10 A2
B A8 $C9 Al
Twe A7 A9 AB . +
D}_I us @2
T4ACT245 by Jl o~ 41
N 1280 ROHE - s 07 A2 GRO
H 178y Alp2 AG D6 €2 GRD
N 2 % S DS 31 GRD
N B3 A3 A5 D4 31 GKO
N B4 A4 $ta 03
N 2
AN 37‘5)!' Ax SA3 DB -
¥
u7 ﬂ[_ TARCT24B J1 Loy
T S
“WR B2 A 29 THR 26 +12V
)] 83 A3 %gg it 26 +12V
nRE(E] BS 5 SAZ8 _MREQ
ZI0RQ 286 A <<cz7 “10RQ
TRFSH Tuee A7 A27 _RFSH
w3

The Computer Journal / #52

Z-Best Software

What S

ummer Doldrums?

By Bill Tishey

I've been extremely busy the past .
qo Listing 1

few months as Z-System Librarian re- New Roleases:
cording a multitude of Z program re-
leases. Therefore, instead of tips for Name Vers S ZSUS Siz Rec CRC Library/Size lssued Author
updating the Z3HELP 5yStem’ which I DIALER.COM 1.00 4 2 10 72D3 DIALER 9 07/23/91 Bruce Morgen
pmmlsed in the last column, I thought BBS Allows your computer and Hayes-compatible modem to dial your voice
it more appropriate this time to list for HLD=N telephone calla. Helpful for scripting through banking and other
you the recent updates and new re- CFG=N touch-tone~based response systems.
leases.”See ”L’S‘m%f I.ami 2 for the NTS . COM 1.00 3 Vv2/10 § 27 E83L NTS10 9 06/01/91 Rob Friefeld
many new and “revised programs. DATE Modified version of NT (Note Taker) which has a simple full screen
I'll comment brieﬂy on some of these HLP=Y editor. WordStar command set. Appendes short notes to files,
and describe a few in more detail. The CFG=Y including the current time.
listings, by-the-way, are taken from my PUSHDIR.COM 1.00 4 1 8 2CAd PUSHDIR 8 06/11/91 Bruce Morgen
ZFILEV10.LST. Note the new format DIR Saves the current default user code and drive to user registers O and
for the 3-line description which assigns HLP=N 1 respectively and restores this location as needed later. Works
a category to the pro and indi CFG=N under all variants of ZCPR3, Z-System, and BGii.
cates whether a HELP (.HLP) and TXTALIAS.COM 1.00 0 V2/10 4 29 88Dl TXTALIAS 17 05/20/91 Bruce Morgen
ZCNFG configuration (CFG) file are ALIAS “Compiles” standalone aliases from standard ASCII source files.

. : ’ ' HLP=Y Similar to ACREATE and BA24, but supports assembly-style comments and
available for it. I'd hke, tO' hear fmm CFG=N multiple linefeeds in the source file. Uses latest, built-in ALIASO.
readers about what they’d like to see in
this column. Such listings could be a ZDT.COM 0.90 0 V2/10 & 64 CES6 ZDTO9 9 07/10/91 Joe Mortensen
continuing feature. Let me know what DBASE Z-System Day Timer, a daily planning calendar derived from ZDB.

f HLP=N Automatically reads the real-time clock and displays the current
you preter. . CFG=N day’'s schedule. Requires ZCPR30+ and extended TCAP.

Hal Bower: Hal has released Version
4.4 of the Libraries which consolidates ZFIND.COM 1.30 0 V2/10 4 29 8F94 ZFIND13 34 08/01/91 Terry Hazen

] FILE 2CPR3 string search utility which very quickly finds ASCII strings in
¢ ges to DSLI.B' SYSLIB, VLIB, and HLP=Y text files. Found string can be displayed in either line or delimited
Z3LIB since version 4.3 (LIBS44A LBR CFG=Y block. Output can be written or appended to a file.

in Microsoft format and LIBS44AS.LBR

in SLR format). The major improve-

ments have been to Z3LIB’s NDR routines. Some additional
work on DSLIB still remains.

Gene Pizzeita: Gene has made some minor bug fixes to
CONCAT (a P2DOS bug) and DATSTP (display of European
date with the ‘D’ option). Also, his ROMAN utility now con-

verts either way (between roman numerals and decimals)
and will also run under vanilla CP/M. Gene is now working
on an update of ZSLIB (version 3.0 should be available as
you read this). Incompatibilities with DSLIB are being cor-
rected, command line parsing is being improved, and many

new routines are being added for date

Bill Tishey has been a ZCPR user since 1985, when he found the right combina-
tion of ZCPR2 and Microsoft’s Softcard CP/M for his three-year-old Apple 11+
After graduating to ZCPR30 and PCPI's Applicard CP/M, he did a “manual in-
stall” of ZCPR3.3 (with help from a lot of friends!), and in late 1988 switched to
NZCOM and ZSDOS, all on the same vintage Apple 11+. Bill is the author of the
Z3HELP system, a monthly-updated system of help files for Z-System programs, as
well as comprehensive listings of available Z-System software.
the Z-System Software Update Service and has compiled such offerings as the
Z3COM package and the Z-System Programmer's Toolkit. Bill is a language analyst
for the federal government and frequents the Foreign Language Forum (FLEFO) on
Compuserve. He can be reached there (76320,22), on Genie (WATISHE), on Jay
Sage’s Z-Node #3 (617-965-7259) and by regular mail at 8335 Dubbs Drive, Sev-

ern, MD 21144.

The Computer Journal / #52

and time output.

Bruce Morgen: Bruce has upgraded a
number of utilities to Type-4 status
(TRIM, W), and continues to improve
others to run more effectively when
linked as Type-4s (SETPATH, VREN).
He’s added LZH support to the LUSH
library shell and has done some code-
crunching on CPA, LGET and PATH.
He's also implemented in the Z34 tran-
sient POKE utility word-wide opera-
tions when a hex number of 3 or more
digits is used. This is useful with
ALIAS17 and SALIAS15 and their new

Bill is the editor of

pointer capabilities, which return
word-wide values. POKE can now
pass such values to system registers for
use for flow control in subsequent ali-
ases or with RESOLVE, etc.

Bruce has also introduced DIALER,
a nifty little program to automate voice
telephone calls to touch-tone-based re-
sponse systems. DIALER-based Z-Sys-

‘tem scripts can relieve one of the hassle

of remembering long banking access
numbers, etc. It is hardware-independ-
ent and assumes only that data can be
sent to the modem via the PUN: device
and that the modem will allow blind
dialing (no dial tone or busy signal de-
tection) and will not wait for a carrier
before going back on-hook.

Joe Mortensen: Joe continues to
tweak his Z-System name and address
database, ZDB. Version 1.4 is consid-
erably faster in finding records and
fixes some problems in screen display.

Joe has also introduced ZDT, the Z-
System Day Timer. A derivative of
ZDB and still undergoing evaluation
and testing, ZDT is a daily planning
calendar which automatically reads the
real-time clock and displays the current
month’s calendar and schedule for the
current day. Word has it that Joe is
now working on ZBIB, a “biblio-
graphic database” patterned after ZDB.

Terry Hazen: Terry has undoubtedly
kept busy this summer with updates to
ACOPY, DSTATS, NZBLITZ, RE-
MIND, SCAN, and a new release -
ZFIND (see below).

At the urging of Howard Schwartz,
Terry has expanded the status message
of ACOPY'’s ‘Update’ option to indi-
cate whether an older file as been re-
placed or not when a file is over-writ-
ten. A file with no datestamp is auto-
matically ‘Dated’, while one with an
older stamp is ‘Updated’. An update
failure now either produces the mes-
sage “No Update (Source Older)” or
“No Update (Same Date)”. DSTATS, a
derivative of DSKMAP and UMAP,
now displays the following additional
disk statistics: the maximum number
of disk directories, (in each user-area
display line) the amount of space used,
and (in the “Free:” summary line) the
amount of disk free space. NZBLITZ,
which saves and loads NZCOM system
images, is now ZCNFG-urable, allow-
ing a choice of image saves 1) up to
CBIOS, 2) up to a specified address, or
3} up to the top of memory. The
NZCOM.CCP file produced by the
NZBLITZ loader can also be flagged as

44

Listing 2
Revised Programs:

Name Vers S 3SUS Siz Rec CRC Library/Size Issued Author

ACOPY.COM 3.30 3 6 46 EBSF ACOPY33 26 07/21/91 Terry Hazen
FILE Attribute Copy program. General file copy tool with source and
HLP=Y destination disk directory caching. ACOPY.PAT hae patch locations.
CPG=N Derived from PPIP ve 1.2.

CLED 1.50 4 na na na CLED15 38 07/23/91 Rob Priefeld
RCP ZCPR34 resident command line editor.
HLP=Y
CFG=N

CONCAT.COM 1.40 O 7 52 B373 CONCAT14 43 05/29/91 Gene Pizzetta
WP Concatenates two or more source files into a destination file,
HLP=Y similar to PIP, or appends them to an existing file. Accepts both
CFG=Y DIR and DU specs. Checks for adequate disk space. For ZCPR3 only.

CPA.COM 1.30 0 4 32 49B4 CPAl3 20 07/05/91 Bruce Morgen
FILE ComPare Ascii utility to analyze two files, on a line by line basis,
HLP=Y and report any differences. Vs 1.0 (01/87) by Malcolm Kemp.

CFG=N

DATSTP .COM 1.50 0 5 37 A66B DATSTP15 70 05/27/91 Gene Pizzetta
DATE Displays or changes the create and modify date stamps on any file
HLP=Y from the command line. Universal version (2SDOS/ZDDOS/ZRDOS with
CFG=Y DateStamper, under Z3PLUS will display but not change datestamps).

DSLIB.REL 4.40 4 V2/11 6 44 3905 LIBS44A 65 06/30/91 Hal Bower
PROG1 Routines to facilitate addition of file time- and datestamping and
HLP=Y real-time clock features. Microsoft REL format.

CFG=N

DSTATS.COM 1.10 0 2 16 DF42 DSTATS11 18 07/23/91 Terry Hazen
DISK ZCPR3 disk/user astatistics utility. Displays disk block size, disk
HLP=Y capacity, allocated and free space, list of active user areas, etc.
CFG=Y Combines DSKMAP and many functions of UMAP.

DU.COM 3.50 0 12 91 496C DU3S 62 07/21/91 Jay Sage
DISK ZCPR3 Disk Utility. Similar to vs .4, but can be patched to operate
HLP=N under standard CP/M as well as Z-System. See DU.COM vs 3.14.
CFG=N

HELPC.COM 1.30 0 S 36 98B9 HELPC1l3 23 06/20/91 Howard Goldstein
HELP Replacement for the standard Z~System HELP utility. Handles crunched
HLP=Y as well as normal, uncompressed help files. Print options are
CFG=Y disabled when wheel byte is turned off. Configurable with ZCNFG.

JETCP .COM 1.20 0 4 26 E78F JETCP12 17 06/08/91 Carson Wileon
FILE A fastest-possible speed file copy program for 3Z3PLUS only. Multi-
HLP=Y sector I/0 and advanced BDOS error-handling. Copy buffers are as
CFG=N large as memory will allow. Preserves CP/M Plus datestamps.

LGET.COM 1.30 0 4 29 3B20 IGET13 4 07/20/91 Bruce Morgen
LBR Extracts specified files from an indicated LBR. Vs 1.0 by R. Conn.
HLP=Y
CFG=

LUSH.COM 1.20 4 4 26 1150 LUSH12 24 07/26/91 Bruce Morgen
SHELL Library Utility SHell which takes advantage of the extended services
HLP=Y of ZCPR33+.

CFG=N

NAME . COM 1.20 4 V2/10 2 11 E793 NAMEl2 9 06/30/91 Bruce Morgen
NDR Renames and deletes directory names on-the-fly. Inepired by Jay
HLP=Y Sage’'s ARUNZ script for the same function.

CFG=N

NZBLITZ.COM 1.40 4 V2/10 2 15 A97B NZBLTZ14 22 06/23/91 Terry Hazen
sYs NZCOM utility which saves and loads system images. Allows fast cold
HLP=Y load of a eystem - full up with desired drivers, path, options, etc.
CFG=Y Configurable with 2CNFG. Ve. 1.0 by Cam Cotrill.

PATH.COM 3.20 4 2 12 08CE PATH32 9 06/07/91 Bruce Morgen
sYS Aliows the user to display the current path or set a new path.
HLP=Y Command line quiet option. 280 required. Vs 3.0 (4/12/84) by R.
CFG=N Conn.

The Computer Journal / #52

POKE.COM 1.10 4 v2/10 2 9 A84B POKEll 7 07/12/91 Bruce Morgen
SYS Transient replacement for the RCP-based POKE command. Type 3 at
HIP=Y 8000h.

CFG=N

REMIND.COM 1.40 0 S 40 3FB7 REMIND14 36 07/21/91 Terry Hazen
DATE Appointment reminder utility for ZCPR3 and %SDO6 with clock. Will
HIP=Y display and optionally print a sorted and paged list of dated appt
CPG=Y reminder lines with optiocnal time entries from a text datafile.

ROMAN . COM 1.00 4 V2/10 2 16 4000 ROMAN1O0 14 06/01/91 Gene Pizzetta
wP 2/ified version of ROMAN.COM (10/78 by M. Pedder) which converts
HLP=Y between decimal numbers and Roman numerals. Works from command line
CPG=Y or in interactive mode.

SCAN.COM 2.40 4 6 47 46C0 SCAN24 100 06/12/91 Terry Hazen
FILE Bi-directional, video-oriented text file display utility that uses
HLP=Y the basic WordStar command set to control viewing.

CFG=Y

SCOPY.COM 0.60 4 15 114 B6AB SCOPY06 30 06/01/91 Rob Friefeld
PILE Screen-oriented file-copy utility. Displays source and destination
HLP=Y directories in vertical windows. ZP-like commande. Supports file
CPG=Y selection and copy by datestamp. Extended TCAP required.

SETPATH.COM 1.10 4 4 27 D71E SETPTH11 20 06/07/91 Bruce Morgen
8Ys Enhanced derivative of PATH.COM which allows adding/deleting elements
HLP=Y from either end of the path. Vs 1.0 (3/8/87) by R. I. Demrow; derived
CFG=N from PATH vs 3.0 (04/84) and PATH 1.0 (01/83) by R. Conn.

SYSLIB.REL 4.40 4 V2/11 22 173 7F7B LIBS44AR 65 06/15/91 Hal Bower
PROG1 Upgrade of SYSLIB 4.0 for 280 compatible computers. Microsoft REL
HLP=Y format.

CPG=N

TRIM.COM 1.10 4 2 10 875F TRIM11l 8 07/09/91 Bruce Morgen
PROG2 Truncates .COM files at a requested address. Used to delete
HLP=Y unneeded DSEG from the output of linkers like LINK, L80, ZLINK.
CFG=N Type 3 at 8000h.

UNZIP.COM 1.50 ¢ 15 119 8D13 UNZIP15 23 06/01/91 Howard Goldstein
LBR Extracts all members of a specified .ZIP file matching <afn>., If
HLP=N <afn> is not present, a directory of the .ZIP file is displayed.
CrG=N

VLIB.REL 4.40 4 V2/11 6 44 DDS58 LIBS44A 65 06/16/91 Hal Bower
PROG1 Library routines for basic CRT screen manipulation as well as extended
HLP=Y graphics routines. Microsoft REL format.
CPG=N

VREN.COM 1.10 4 V2/10 4 27 3A4A VRENLL 31 06/05/91 Bruce Morgen
FILE Visual File RENamer. Provides interactive renaming of files with
HLP=Y format checking. Vs. 1.0 (8/8/88) by Bruce Morgen.

CPG=N

W.COM 2.40 4 4 32 A6F2 W24 30 07/03/91 Bruce Morgen
PILE Wildcard Shell Processor that enables wildcard processing for
HLP=Y programs that do not usually accept wildcard parameters.

CFG=N

XOX.COM 1.0k 4 12 93 C359% XOX10K 27 06/01/91 Rob Friefeld
FIILE Text file viewer with additional functions for listing blocks, writing
HLP=Y blocks to disk, & merging files. Does not uncompress files or access
CPG=N libraries. PFollow-on to VIEW.COM. Requires extended TCAP.

Z3LIB.REL 4.4a 4 V2/11 11 88 A768 LIBS44A 65 07/14/91 Hal Bower
PROG1 ZCPR3-specific library routines. Microsoft REL format.
HLP=Y
CNG=N

2DB.COM 1.40 0 8 64 DB21 ZDBl4 31 06/28/91 Joe Mortensen
DBASE Small, fast name and address file manager with built-in label and
HLP=Y envelope addressing features. Requires extended NZTCAP.
CFG=Y

ZPILER.COM 1.0p 4 15 116 51B7 ZFl0P 105 07/27/91 Rcb Priefeld
PILE Rnhanced version of VFILER designed to take advantage of ZCPR33+
HLP=Y facilities. S-col, reverse video, DateStamper version.

CFG=N

The Computer Journal / #52

a system file and/or archived file. Any
pending multiple command line in the
old system is now saved and appended
to the loader MCL, a feature which
should allow for some interesting use
of loader files in aliases.

Major enhancements to REMIND
are the inclusion of a calendar display
at startup, along with the option (“/1-
12”) to display a calendar and upcom-
ing reminders for a specified month
only. Screen paging is also now an op-
tion (allowing it to be turned off when
sending reminders to a printer).

Terry has also added speed,
smoothness and an improved screen
display to SCAN, his bi-directional
text-file viewer. Use of a modified
Boyer-Moore search algorithm also
now results in faster string finds. Rob
Friefeld: Besides a significant update to
ZFILER (see below), Rob brings us
NTS, a modified version of Note Taker,
as well as updates to CLED (see below)
and his screen-oriented utilities SCOPY
and XOX. Rob is also working on en-
hancements to LSH, his now-famous
command-line history shell.

Improvements to SCOPY include a
new command to RELOG the current
source/ destination/mask, some fixes
to the Zip command, and a new Group
Zip command to copy all tagged files
to an alternate directory. “Z” and “GZ"
now act more like ZFILER’s “C” and
“GC” commands.

ZFIND.COM vs 1.3 (ZSUS Vol 2 #10)

Terry Hazen’s new ZFIND utility is
a string-find tool styled after Irv Hoff's
FIND.COM, only much faster and more
powerful.

ZFIND will find one or more ASCII
strings in a group of wildcarded ASCII
text files. Searches are performed in a
16k text buffer, using a modified ver-
sion of the Boyer-Moore string-search
algorithm. When a matching string is
located in the buffer, the line contain-
ing the string is displayed, in either the
line or the delimited block in which it
was found. The entire buffer is first
searched for stringl and the finds dis-
played, then the buffer is searched for
string2 and those finds displayed, etc.
When the buffer has been searched for
all strings, the next buffer-full is read
in and the process repeated. The same
process is repeated for each file that
matches the specified ambiguous file-
name. Since the search process ignores
lines except to display the found string,
line number output is not provided.

45

See Figure 1 for ZFIND's syntax. 2p.CoM | 40
Certain characters may be used dur- FILE

ing string entry to enter special charac- HLP=Y

ters into the search string: a question CrG=Y

mark matches any character in that po- 25..CoM 1.10
sition; an underline character is LBR

changed to a TAB; and a backslash is HLP=N

changed to a line feed, allowing creN

ZCPR334/23PLUS screen-oriented file/disk/memory record patcher using
the ZPATCH command set.
cache can be exchanged with file/disk/memory records.

Z'ified version of Dave Rand’s NSWP207 with NDR support and ability to
act upon the current file with any Z-System command up to 127 chars.
Requires ZCPR33+ with extended TCAP.

4 8 64 5BD8 ZP14 95 07/17/91 Terry Hazen

Requires a VLIB4D+ Z3TCAP. One-record

1] 14 105 FF2A ZS11l 47 06/28/91 Pete Pardoe

searches for strings starting at the be-

ginning of a line. Output can also be written or appended to
a file. Searches are normally performed ignoring case; how-
ever, if you don’t specify a string on the command line, one
is requested, allowing you to enter the string in the exact case
desired. Terry provides several sample applications for
ZFIND in his included help file (ZFIND13.HLP). Single-line
index files are simplest to search. The alias “LOOKUP zfind
dir:mast.cat $*”, for example, will perform fast filename
lookups in MAST.CAT files. Block-display applications,
however, are also easy. The ‘B’ option, for example, allows
lookup of keywords in *.FOR files, displaying the entire FOR

Figure 1
BO:WORK>ZFIND //

ZFIND String Find Utility vers 1.3
Syntax:
ZFIND [dir:}afn [string(e)] [>outfile] [/options]
If no string is included, one will be requested,
permitting a search for lower-case characters.
Special string characters:
“|" separates multiple search strings
“?” matches any character
“_" matches a tab character
*\" matches the beginning of a line
Options:
U - Search files on all user areas
A - Display all files searched
C - Display found string line in context (3 lines)
B - Displayfoundstring line inadelimited (LF,"~") block
D - Don‘t Page screen display
>[dir:]Joutfile - Output to file
>>[dir:]outfile - Append to file

messages for a specified filename. The same option can be
used to search ZFILEVxx.LST, RCPMxxxx.LST and similarly
delimited lists. ZFIND's faster search speed and ability to
output/append to a file would appear to make it more pow-
erful than XFOR for such applications.

Since ZFIND is ZCNFG-urable, default configurations can
be created for a wide variety of applications. To create a
‘card’ file of topic or article paragraphs, for example, where
each paragraph contains keywords and topic summaries, de-
scriptions, etc., simply configure ZFIND to use 0Dh (CR) as a
delimiter. ZFIND will then display the matched strings in
single-spaced paragraphs. To create a version of ZFIND
which always searches all user areas on

fixes to some pesty filecopy bugs, the following changes and
additions are worth noting:

1. ZF10P.LBR is a hefty file (105k), and includes the usual
separate versions for display of 4 or 5 columns of files, dim
or reverse video, and support for DateStamper. It also, how-
ever, contains 1) a complete version history since its prede-
cessor, VFILER 4.2, 2) the text of Jay Sage’s TCJ articles (is-
sues 36 and 37) detailing the functions of ZFILER, and 3) an
addendum updating Jay’s material. The latter contains notes
on Group Macro scripting which many have been seeking
since version 1.0m. Such attention to documentation was par-
ticularly thoughtful, but then, this has been a trademark of all
of Rob’s work!

2. ZFILER is now ZCNFG-urable. An included ZCNFG
(.CFG) file handles complete configuration except for macro
string installation. Three screens allow setting of general de-
faults as well as specific “macro-related” options. “General”
options include a toggle for uppercase display of filenames
and another for “clear screen on exit”. (The latter should be
good news to those who've ever run a macro command from
ZFILER.CMD, then, as ZFILER reloaded with the “Strike Any
Key” prompt, watched it clear the screen of any message
from the program that had just run before you could read it!)
“Macro-related” options allow setting of the search path or a
fixed DU: for ZFILER.CMD and ZEX batch files. Another
option allows erasing of a .ZEX file after a shell run. (Of
course, you'd only want to set this once you've debugged
your macro command file!)

3. ZFILER's Group Tag/Untag commands now operate
from the file pointer to the end of the file list, rather than on
the entire list. Thus, if you go to mid-screen and press “GT”,
only files from the cursor position to the end of the file list
will be tagged. This is a restoration of how ZFILER used to
work.

4. The Group Macro now puts the tagged file count into a
configurable user register before running. This allows the
macro to downcount and take some additional action after it
has run on each tagged file. As a sample application, Rob in-
cludes the following macro, which creates libraries of
crunched files (thanks to Lindsay Haisley for pushing for this
feature!):

1 t du:;$lcrunch $£ Ml:;reqg m5;if reg 5= 0;$"Library DU “:;
lput $"Library Name: “ Ml:*.* 41;era Ml:*.?Z?;fi;$hs

the specified or default drive, simply

. Figure
set the ‘U’ option test to always true. gure 2

Syntax: CLED

ZFILER vs 1.0P

Rob Friefeld’s update of ZFILER,
the ZCPR3 file-maintenance shell, has
been much anticipated. The last update
(vs 1.00) by Carson Wilson was nearly
two years ago, so there was much on
Rob’s list for improvement. Besides

CLED [/}
If “/", run once only (e.g. from a shell such as ZFILER)

The default control key set includes these important commands:

CR - execute command line
ESC Q - pop the shell
ESC S - toggle recording on/off
"W - recall command lines from history stack
“E = recall history in reverse direction

(prompt shows >/>> to indicate state)

The Computer Journal / #52

Typing “G<ESC>1" will crunch all tagged files to a fixed
directory M1: (on a RAM disk), make a library out of them
(leaving room for one more file) with input for library name
and location, then erase all the crunched files. [Note that REG
must be a Type3 or Type4 program (or RCP) for the ZEX GO
“$!” to run CRUNCH repeatedly. Also remember that regis-
ters only hold a 255 count! For consistency, single macros put
a “1” count in the user register. ZFILER will also allow use of
the full register range (0-31), although one should be aware
that 10-15 are reserved and 16-17 are used by other pro-
grams.] The only complaint remaining about ZFILER which
I've heard of is its failure to filter output generated by the
view function. Certain escape sequences when not trapped
can wipe out a terminal (even reset the configuration stored
permanently in RAM). Rob may address this problem in a
future update.

CLEDvs 1.5

Rob has also updated his memory-resident command line
editor {CLED), originally distributed with Z34RCP11.LBR.
Installed as part of an RCP, CLED adds the features of cursor
movement, insert/delete, and record/recall of command
lines to your Z34 CCP. It is a ZCPR “shell” (using up one
shell stack entry), and thus will reinvoke itself automatically
following any ZCPR command. If a Z$/ZDDOS, DateStam-
per, or Z3PLUS clock is implemented, the command prompt
will show the system time. See Figure 2 for CLED’s command
syntax.

CLED15.LBR includes two companion programs. An in-
stallation program, CLEDINST, allows you to set up CLED to
your preference. The RCP can be installed directly in mem-
ory for testing, and then saved to a file with an image-saver
such as SNAP or NZBLITZ. The segment image can also be
saved with command lines already loaded.

CLEDSAVE, a history save/load tool, writes the contents
of the history stack to a text file on disk. This file can be
reloaded later (CLEDSAVE <file> L), or composed in ad-
vance with a text editor, then loaded. CLEDSAVE is useful in
a startup alias to load frequently used command lines from
an easily edited file.

See the Z-Message Base below for instructions on assem-
bling an RCP to implement CLED. Note that the RCP must
be assembled from scratch, loaded with JETLDR, then saved
with NZBLITZ. You can’t simply load the new RCP into an
old NZRCP.ZRL file. If you don’t have an assembler, there
are many users who would be happy to create the CLED-
RCP segment for you. Simply decide what you want in your
RCP and how many records you have allotted and drop a
note to the editor or myself with your system specifics.

Z Message Base

Z-Node #2, 07/26/91 CLED15.LBR

Question: 'm interested in implementing the improved
CLED editor. What do I assemble the RCP with and how dol
select the part to be assembled?

Answer: Here are the steps to implement CLED15 in a 234
RCP. The SLR assembler or ZMAC will do.

1. You need all the source code
Z34RCP11.LBR.

2. Edit Z34RCP.LIB

Find the configuration information “CLED Command”
and replace it with Z34RCP.INC in the CLED15 library. Look
through the section to set up the history size you want.
(Kaypro users should put in the Kaypro EREOL screen code
(18H?) to save lots of bytes.)

3. Assemble the RCP:

distributed with

A0:>SLR Z34RCP11/6

The assembler will prompt you for which modules to in-
clude. (My 18 record RCP has room for CLED, ECHO, ERA,
CLS, and some little custom ditties.) ZMAC Z34RCP11 also
works, but the prompts are a bit scrambled.

Just type a Y or N if you want a module or not.

4. Load the .REL (rename to .ZRL if you prefer) file with
JETLDR and it is running.

5. Run CLEDINST to install your command set in the
RCP.

6. Save it with NZBLITZ or SNAP. (Rob Friefeld) @

[e]

Reader, from page 2

ommend) speaks of the need for “value-added differentia-
tion”"—some difference that makes your product more valu-
able than the others. I think TCJ has this...but it took me
over an hour (and two drafts) to be able to put even part of it
in words.

Perhaps TCJs problem is image. Peters also points out
that successful enterprises need a vision: a short, clear,
understandable statement of mission and purpose. I think
that, until the last issue, TCJs vision has been a bit murky;
and this translates into prospective subscribers not being re-
ally sure what TCJ is for. (Issue 51 has started to change this,
with the ad on the back and also with your Edifor’s Desk.) A
clear vision is a message you can promote, an idea you can
sell.

Some famous producer once said, “if you can’t write your
[story] idea on the back of my business card, you don’t have
a clear idea.” It’s a good target to shoot for.

B.R. Toronto, ON

You identified the TCJ reader quite well: embedded systems

The Computer Journal / #52

developers, serious hobbyists, experienced CP/M users and novice
Forthers. This is a market I am comfortable with. However, you
say, “low-budget hackers who ‘cross-specialize’ in both hardware
and software, who like to tinker and know everything about how
their computers work,” (people like yourself) are a dying breed. Is
this to say “the barn storming days are over?” Look at any wheat
field in Kansas. There are still biplanes earning a living every day
of the year. We may not represent the main stream, but we are and
always will be a necessary part of the whole. As long as there are
chips on boards and boards in systems, someone has to know what
they do.

Luckily, TCJ doesn’t need many such people to be a commercial
success. BYTE has a circulation of 450,000. One percent of this
would be a good number. Do you think in all the computer indus-
try there are still 4,500 people like us?

“If you can’t write your idea on the back on my business card,
you don’t have a clear idea.” Try this:

*TCJ serves the entrepreneur in embedded controls and the se-
rious computer hobbyist desiring to learn software and hardware

See Reader, page 50

47

TCJ-the Computer Journal Market Place

TCI The Computer Journal M arket p'ace
H 8/89'er Advent Kaypro Upgrades o F
THE STAUNCH 8/89 Advertising for Small Business
rt f nki TurboROM. Allows flexible configura- '
Support for Heat t tion of your entire system, read/write Looking for a way to get your message across?
H-8 and H/Z-89 Computers: additional formats and more. $35 Advertise in the Market Place!
. . X First Insertion: $50
. Hard drive conversion kit. Includes . -
Bimonthly Newsletter, interface, controller, TurboROM, soft- Reinsertions: $35
7-System & HDOS Systems, ware and manuval—Everything needed Rates include typesetting. Payment must accom-
CP/M and HDOS Utilit y a nd to ;nsdu:ll a! h;lr;lsdriveh exceplt u;: ?zl;)lf) sany order. Egriifrr‘\kord_er: pa:. in l{S ﬁmd."scwCle
; ; an ive without cloc rawn on a or international money order.
ADD lications Software, with clock. ’ Resetting of ad constitutes a new advertisement
. at first insertion rate. Camera ready copy from
:’:;zontz::xoty gjtggeru?azt'aguge‘:;:; laser printers, photo typesetters, etc., are accept-
THE STAUNCH 8/89'er . - able. Dot matrix, daisy wheel, typewriter output
c¢/o Kirk L. Thompson drives when used with TurboROM. $25 not accepted. Inquire for rates for larger ads if

required. Deadline is eight weeks prior to publi-
cation date. Mail to:
The Computer Journal
Market Place
PO Box 12
S. Plainfield NJ 07080-0012 USA

P.0. Box 548
West Branch, IA 52358
Voice: 319-643-7136
{eves and weekends)

Limited Stock — Subject to prior sale

Call 916-483-0312 eves/weekends or
write Chuck Stafford, 4000 Norris
Avenue, Sacramentoe CA 95821

I For: CP/M Users with a sense of humor

WHILE YOU WERE OUT

I Mr Bradley

CP/M SOFTWARE

of: Small Computer Support

100 page Public Domain Catalog, $8.50 plus $1.50 shipping
and handling. New Digital Research CP/M 2.2 manual, $19.95 Address: 24 East Cedar Street
plus $3.00 shipping and handling. Also, MS/PC-DOS Soft- Newington, CT 06111
ware. Disk Copying, including AMSTRAD. Send self addressed,
stamped envelope for free Flyer, Catalog $1.00

[] called for you
[x] stopped by
{x] wanis to hear from you

Elliam Associates

Message:
B OX 2664) Remember Pieces of 87 It's back, better than
ever as Eight Bits & Ch, , a bi thi
A T Qasca d cro, C A 9 3 4 23 ne‘ivrs(:'(:tte'rgﬁlIedI ;ilh hu?rlm‘o%?t;o:ir:;?gr;phics
and fine technical articles. Only $15 per year
805_466-8440 inthe U.S. ($18 in Canada and $21 foreign.)

Subscribe today! Satistaction guaranteed!

Z-System Software Update Service
Provides Z-System public domain software by mail.

Regular Subscription Service
Z3COM Package of over 1.5 MB of COM files
Z3HELP Package with over 1.3 MB of online documentation
Z-SUS Programmers Pack, 8 disks full
Z-SUS Word Processing Toolkit
And More!
For catalog on disk, send $2.00 ($4.00 outside North America)

and your computer format to:
Sage Microsystems East
1435 Centre Street
Newton Centre MA 02159-2469

48 The Computer Journal / #51

Real Computing

X-10 Revisited, Mach, Minix, and Desqview/X

By Rick Rodman

X-10 Revisited

In issue #48 1 wrote glowingly of the X-10 Powerhouse
computer interface, known as the CP-290, that “any X-10
commands which come across the line are converted to
status messages that the computer can see”. Mike Morris
writes: “I have a CP-290, and mine does not produce these
messages when | push a button on a manual controller.”

After some experimentation and consulting with the X-10
gurus at Home Control Concepts, I have to admit Mike is
right. The CP-290 does report to the computer when buttons
are pressed on it itself, but it doesn’t report codes that come
over the wire. It is a send-only, unidirectional device.

Actually, the plot’s even thicker than that. Manual control-
lers, like the wall switch modules, don't send codes at all,
they only receive them. There is no way for a central control-
ler to know whether a user has manually turned a light on or
not.

There is another computer interface available, which is
called the TW-523. This device has an optoisolated TTL-level
interface which can be operated through parallel input and
output bits. It's “dumber” than the CP-290—it has no battery
backup or timers—but it's bi-directional: the computer can
send or receive any X-10 code over the power lines. Remem-
ber, the manual buttons on the wall switch units don’t send
any code. However, you can receive codes sent by other con-
trollers or by motion detectors.

If you're planning a system controlled by a dedicated
computer, the TW-523 sounds like the way to go. It's avail-
able from Home Control Concepts for $30. It's also available
as part of a Powerline Interface Kit for $69, which includes a
C library and sample code as well as a cable for connection to
a PC parallel or serial port.

HCC also has available some wireless motion detectors.
These detectors send an on-code when motion is detected,
and an off-code when motion stops, through the same base
unit used by the wireless hand control. Because they're wire-
less, you can put them anywhere—out in the yard, garage,
parapet, moat, wherever. Because they send a code, you can
not only turn on a light or sprinkler system, you can also
detect the code in your TW-523 and activate a voice synthe-
sizer or camcorder, or switch speakers connected to the ste-

reo, or anything else.

Mike Morris suggests some neat applications for X-10: “I
want to be able to turn on the sprinklers when the ground
gets dry or if the burglar is leaving, but not the day after a
rainstorm. | want to run the dishwasher after everybody goes
to bed, then turn the water heater off but back on an hour
before I get up. And divert the clothes dryer exhaust into the
furnace air intake when appropriate so the furnace grabs the
preheated humidified air.”

Mike also provided some “from the trenches” information
on X-10: “The X-10 signal can have problems ‘jumping’
across the two halves of a 220 volt household circuit. I ended
up acquiring a capacitor of the proper value, installing it in a
220v plug and plugging it in. ‘One of these days’ I'll install
the Leviton capacitor module in the main electrical panel, but
for now, it works.”

If you're planning a system controlled
by a dedicated computer, the TW-523
sounds like the way to go.

He also points out that some X-10 lamp modules “forget”
their brightness setting and will “creep” up or down over
several hours, and suggests “refreshing” their settings peri-
odically. (That'll also solve the problem of people using the
manual buttons—and staying too long in the bathroom, too!)
He points out that the CP-290 doesn’t keep accurate time,
losing about an hour per month. Mine has forgotten its house
code a couple of times. “The battery compartment in the CP-
290 does not have a barrier between the battery and the cir-
cuit board. Mine leaked and ate away a few traces, which I
repaired with a small soldering iron and 30 gauge wire.”

Not only X-10, but the whole field of home automation is
booming in popularity these days. The CE Bus, a fully-bi-
directional superset of X-10, is coming. I'll venture a guess
that the reasons for this sudden interest are (a) the increase in
crime, especially senseless violence and vandalism, (b) higher
energy costs, and (c) it's inexpensive and loads of fun!

Mach on the PC-532
Carnegie-Mellon has released a

Rick Rodman works and plays with computers because he sees that they are the
world’s greatest machine, appliance, canvas and plaything. He has programmed
micros, minis and mainframes and loved them all. In his bascment full of aluminum
boxes, wire-wrap boards, cables running here and there, and a few recognizable
computers, he is somewhere befween Leonardo da Vinci and Dr. Frankenstein. Rick
can be reached via Usenet at uunet!virtech!rickr or via 1200 bps modem at 703-330-

90439.

The Computer Journal / #52

“Micro-Kernel” for Mach which con-
tains no AT&T code. If you have ftp
access (which I don’t), you can get it
and play with it. It's called 2 “micro-
kernel” because it includes no 1/0 or
utilities. A “UX server” task, made ap-
parently of pieces of Unix, is run to
provide the missing capabilities. Some

49

Reader, from page 47
applications.”
Did it fit?—Ed.

I think the author of the previous letter said it well. I'm sure
what 1 look for in a magazine, but I think I recognize it when I see
it. I sure did like MicroCornucopia. TGJ and CCI are my re-
placements for it, but TGQJ wins out with its Forth coverage. I liked
DD)] in the early days, loved Kilobaud and the early Byte. Kilo-
baud is dead and Byte might as well be. The common thread
seems to be hardware, and hardware that can be built and fooled
around with on a limited budget. Obviously I like software too.
Maybe we are a dying breed. 1 hope we with an interest in both
hardware and software are not. I think magazines such as Popular
Electronics, Radio-Electronics, whatever, even though they tend
to be criticized for poor technical content, suggest that there is a
good target audience out there for TGJ. If so, how do we reach
them?—Frank Sergeant, Contributing Editor.

I am glad I made it to the Trenton Festival this year: be-
sides meeting you, Al Hawley, Ian Cottrell, Howard Gold-
stein, Bruce Morgen and Harold Bower for the first time, it
broke the sense of isolation I sometimes feel in this remote
corner. | found a lot of commonality with what Bower is
engaged in and hope to set up some exchanges with him.
Looking forward to further developments on banked systems
and new Z-180/280 boards!

L.V.H. Mill Creek, WA

The Trenton Festival is a great way for CP/Mers to get to-
gether, and it was a pleasure meeting you, too. There were some
unfortunate oversights on the part of the sponsoring clubs but we
got on pretty well despite that. Talk is that there will be a special
banquet for 8-bitters next year. Bob Dean and 1 have been ap-
pointed joint ring-leaders to get it organized. Be looking for more
information in the next few months.—Ed.

 Enclosed is a check for $25 US. The reason it is more than
you asked for is to allow for the extra aggravation you may
experience. I recently learned American publishers are run-
ning up against our Customs bureaucrats....

I see future use for old CP/M machines dedicated to
monitoring and controlling homes and offices such as Jay
explained in his articles. | would be particularly interested in
more articles, particularly concerning building systems con-
trol/monitoring such as heating, ventilation and security
checking. It would be beneficial to call up your place during
a winter storm and check out the furnace or verify against
unauthorized entry before calling the police.

I would like to see an article dedicated to RS232 standards,
common usage with peripherals and those inevitable devia-
tions from standard, as Art Carlson asked about earlier.

Keep up the good work, we readers do care. Some of us
just do not communicate the fact often enough.

P.C. Edmonton AB

Thank you! I haven’t any problems yet, but will be watching.

I like your idea of CP/M boxes to control the home. But don’t
limit yourself to using a general purpose computer. Many of the
embedded controller types who frequent these parts can cook up
quite a system with an F68HC11, 8031, Z8 or similar.

Thanks for your letter. You are right, the authors necd your
feedback and so do I!'—Ed.

I am operating under TurboDOS. Any chance of a TDOS

article?

H.R. Philadelphia PA

Good question! Requests have also been received for articles on
CDOS and S-100. S-100 Buss dropped S-100 support, of all
things! Any takers?—Ed.

My company is spearheading an effort to develop a SCSI
host adapter for the Zenith Z-100 computer and I noticed that
some of your back-issues have articles relative to this project.
Please send issues number....

P.F.H. New Port Richey FL

Your issues are on their way. Keep us posted on your progress
with the Z-100 project. Sounds like something we’d be interested
in.—Ed.

I have a Kaypro 4+88. Is there anything past MS-DOS 125
for this machine? Also, has anyone replaced a Z80 with a
72807

P.B. Broadview IL

I'm afraid you can’t pop a 2280 in place of a Z80. Though the
‘280 is software compatible, it is not compatible on the hardware
level. Have you been following the YASBEC articles?—Ed.

Got the magazine a few days ago. I'm impressed. It has a
good format and the articles are well done, informative and
useful. I'm quite new to CP/M and the Z-System so some
things were just a little over my head, but that just means I
need to work with the computer more to gain a good level of
knowledge. I have found the CP/M group here in Portland.

As for the handwritten letter, it was a nice change from
the normal mass produced standard form letter.

R.D.W. Portland OR

Thanks for the compliments! Yes, we are blessed with great
authors. I like your attitude about learning more o reach the level
of the articles rather than pulling the articles down. Can’t learn
that much.

Note to others: Richard noticed that 1 have never bought a
typewriter. I wrote a handwritten letter to him. One day I may
spring for a Selectric though 1 really prefer to stay with state-of-
the-art technology, like 8-bit machines...—Ed.

How about some material on the old CP/M Kaypro 11/
1V’s? I may even have some to contribute!

F.G. East Greenville PA

You're on, Frank! Let’s see what you have in mind.—Ed.

I'd like to see articles on X-10 software, hardware and
interfacing; sound generators and voice synthesizers.

R.D. Longueuil QU

1 agree and am hoping to sce some good submissions.—Ed.

My primary attraction to TGJ is as a “last bastion of 8-bit
computing,” much as Jay Sage has represented on the
Internet and in his announcements on Z-Node 3. Over the
course of the year, however, I have witnessed the departure
of Bridger Mitchell's Advanced CP/M column and was
disappointed to see nothing further along the lines of the
article on available S-100 boards. The increasing focus on Z-
System and embedded controllers reminds me all too much
of MicroC’s abandonment of “us poor CP/M’ers,” who were
grateful for even such simple things as current vendor
listings.

See Reader, page 52

The Computer Journal / #52

PMATE/ZMATE MACROS

5. Downloading Earlier Columns and A Sort Macro

By Clif Kinne

Since each of these columns presumes that the reader has
access to preceding columns of the series, new subscribers
are at a severe disadvantage. To alleviate this inconvenience,
I shall post each column to Jay Sage’s ZNode BBS a couple of
months after you receive it in the mail. This delay will aliow
me to incorporate any correction and clarification that ap-
pears needed. (Those who have worked their way through
earlier columns know that I need some such escape valve.)

Downloading Columns

As of now there are just two files to be downloaded:

PZMCOLS.ZIP: PMZMCOLS, an acronym for PMATE/
ZMATE Columns, is a “zip file” library of 4 files,- one for
each of the first 4 columns:

PZMCOLO1.RV1
PZMCOLO2.RV1
PZMCOLO03.RV1
PZMCOL04.RV1

The extension, RV1, indicates that the file has been revised
once since it appeared in TCJ. PZMCOLS.ZIP is about 32
kilobytes long, whereas the individual file lengths before
compression total about 82 kilobytes.

PZMACS.MAT: This is a file of all macros presented in the
first four columns, each in executable form without com-
ments. Since, in this form, they use relatively few bytes, they
are not compressed. This file may be downloaded and indi-
vidual macros put to immediate use with a minimum of tai-
loring to your system and taste.

The downloading process.

Jay Sage’s Z-Node BBS is at (617) 965-3552. Although this
BBS caters to the Z-System and CP/M, the files are equally
accessible to DOS.

If you are running on CP/M or the Z-System, you will
need UNZIP.COM to decompress the files. If you don’t have
it, you should get it. Jay has it on the Z-Node. It is in the
library file, UNZIP15.LBR, whose members are crunched, so
you will need UNCR.COM also.

If you are running DOS, you will want PKUNZIP.EXE,
which is in the self-unzipping library file, PKZ110.EXE,
which, in turn, is available on most DOS BBS's.

If you do have occasion to download these files from Jay's

Z-Node, please take the occasion to leave me a brief message.
If nothing else, what version of PMATE are you running:
ZMATE, PCMATE, MATE, or more than one?

A SORT MACRO.

Eight years ago this August, Lifelines published a macro
that prepares a sorted, columnized disk directory. The sort
part of the macro was submitted by Ron Finley of Harley,
Oregon. Over the years [have greatly embellished and re-

Listing 1.

The basic Sort Macro.

X’ ;Sort 82 bytes
; FUNCTIONAL SPECIFICATION:

; Sorts a column (unsorted list, UL) of text items in
H one buffer into alphabetical order in a second

buffer (sorted list, SL).

; The inner loop moves the SL cursor successively

H closer to the alphabetical target for the next item
; in the UL, each move being half the distance of the
; preceding, so that, on the last move of 1 line, it
H winds up just above or just below where it should

’

be.

H The outer loop corrects that l-line uncertainty as

: necessary before going for the next item in the UL.

H VARIABLES USED: V0, the no. of items in SL.

H V3, the no. of lines moved on the

; current pass throught the inner loop. V3 is|
cut essentially in half after each pass.

H BUFFERS USED: B4 holds the unsorted list, UL.

H B2 holds the sorted list, SL.

H SUBROUTINES: USING:

; "R Restore %G GoBack

: .8 SaveEnv .G GoBack

fined that DIR macro, but never modified the sort part. Now,
thinking about offering them in this column, 1 thought I
might spread them over several issues and start with the sort
macro in this issue.

When [went over the macro with some care, it seemed to
be difficult to justify some of the tortu-

Clif Kinne is a retired computer designer. He cut his teeth on vacuum tube and
acoustic delay line machines in the fifties, made the transition to transistors and
magnetic cores in the sixties, left the field to his children in the seventies, and tried,
vainly, to catch back up with them in the eighties. He can be reached by voice at 617-
444-9055, or via a message on Jay's BBS, 617-965-7259. His address is 159 Dedham

Ave., Needham, MA 02192

The Computer Journal / #52

ous steps taken to achieve its flawless
performance. So I asked myself what [
should do if starting from scratch. The
end result is the macro depicted in
Listing 1. This consumes 82 bytes, com-
pared to 145 bytes in the original. It
seems to work as flawlessly as the

51

original, and most of the steps I find to be quite plausible.
I hope you do. The one exception is on line 14, the increment-
ing of V3 before dividing by 2. I can only justify this empiri-
cally. Maybe one of you can tell us how we could have an-
ticipated that this was an appropriate or necessary step.

On my 12 Mhz AT, this seems to take a second for every
16 items in the unsorted list. This is not terribly fast, but is
very acceptable for an average 50- to 60-item directory. On
my 4 Mhz CP/M machine, it is 5 or 10 times slower. In
neither case, did I recreate the directory every time I dis-

H USAGE: The unsorted list must be in B4 when this
; is called. Then it may bs called from any
: buffer.
HE CODE:
.8 ;Save the environment. 1
ovo ;Clear VO (No. of items in SL). 2
B2K ;Clear destination buffer, B2. 3
[;Begin ocuter loop through UL. 4
B4E ;6o to UL. 5
A ;To top - 6
AT=0_ ;jTerminate if UL is empty. 7
B2N ;Move fixrst item in UL to SL. 8
VAO ;Increment no. of items in SL. 9
B2B ;Go to SL. 10
A ;To top. 11
eov3 ;Initialize V3 to the no. of items in SL.12
[;Begin loop to put top item of UL in its 13
; alphabestical place in SL.
83+1/2v3 ;Increment previous V3, then halve it. 14
9H"A@4$<0 ;IP item at cursor < top item in VUL, 15
{@3L ;s THEN move down. 16
}{~-@3L} ; ELSE move up; 17
83=1 ;IF V3 is 1 at this point, you are done. 18
] ;ELSE loop again. 19
CH"A45<0 ;IF item at cursor < item in UL, 20
{L} ;THEN move down (to correct uncertainty).2l
1 22
R ;Restore the environment. 23
B2E sReturn to SL. This step is optional. 24

played it. Instead, I saved it to disk and simply redisplayed it
most of the times. In fact, with a fairly large directory in CP/
M, I often made a few patches by hand before creating a new
one.
For purposes of calling this in future columns, I shall have
to give this a name, and shall simply use the one I have been
using for years, namely, .’.

Speedier sorting of a partially sorted file.

Having gone this far, | worked out a modification that
cuts the time to 40% if the UL is mostly sorted with a few
random additions at the end of the list. So if you are using a
DIR sorting utility, the macro will take advantage the pre-
sorting. My deadline is upon me, so I shall simply make List-
ing 2 the code for the lines of Listing 1 which are changed.

The first line is line 11 from Listing 1, with the preceding
semicolon to indicate that it is to be omitted. It is replaced by
the following lines, 11a, 11b, and 11c. The only other change
is the addition of line 21a following line 21.

As you can see, the new code simply checks first to see if
the next UL item belongs at the bottom of SL. If it does, the
inner loop is never entered. Otherwise, the inner loop code is
executed exactly as in Listing 1.

I wonder how many hours I would have saved if I had
taken the time to work these things out 8 years ago. On
second thought, I’'m happier not knowing.@

Listing 2.
Code modifications to Listing 1 to speed sorting a partly
presorted list.

;A :To top. (Remove original line 11)
Z-L ;Move to last item in SL. 11aj
QH"AR4S5>0 sIF item at cursor > top item in UL, 11
{ ;THEN execute steps 12-21 of Listing 1. 1llq
YL} ;ELSE move to line bslow last item. 2134
] sand return to start of outer loop 22

; to put top item in UL here.

Reader, from page 50
I plan to build an S-100 board containing a real-time clock

and work extensively with BDS C and Aztec C under CDOS.
If articles on either of these topics would interest you, please
let me know.

J.J.G. Lexington MA

We have been working more with embedded control topics as
they have proven quite popular with the readers. Please note, how-
ever, that 1 added nearly 30 pages to provide room for the new
material without denying our roots, the CP/M'er. I am as con-
cerned about abandoning our charter as anyone. For the record, we
did not drop Bridger Mitchell. He has been very involved in his
professional work and has promised to return when he can. I look
forward to his next article.

There are two things needed to assure support from any maga-
zine: articles to publish and readers to buy the result. We have the
readers (can always use more!) and I am interested in the articles
you suggest. Frankly, I am rather curious why the authors and
readers of the old S-100 Buss haven 't looked this way.

Sometimes a publisher sees greener pastures and moves beyond
where the readers want to be. Let me know if 1 do this to you.—Ed.

Is W.H. Laidley suggesting, indirectly, that real power
protection is only available via a rotary converter, i.e. an AC

52

motor driving an AC generator, preferably with a big fly-
wheel to smooth over hiccoughs?

A.S.M. Bois-Colombes, France

No, Mr. Laidley’s article in issue 49 addressed two issues. He
takes issue with using the ground plane to absorb surges as it is
poorly isolated from signal ground in most systems. This would
divert high energy away from the power supply, a relatively cheap
and robust unit, and toward the TTL-level ports which are much
more expensive and delicate. He also has concern with using
MOVs in power protection and gives two principle reasons: An
MOV breaks down a little at a time with every surge it absorbs,
yet never warns that its protection is failing, and MOVs are sub-
ject to thermal runaway. Layman'’s talk for this is “catching on
fire.”

Implementing Mr. Laidley’s recommendations involves using
devices other than MOVs and avoiding use of the ground plane.
His firm, Zero Surge of Bernardsville Nj, sells units that meet
these criteria. The devices are neither cheap nor trivial (they cost
about $200) but from my experience so far, they are effective. After
losing issue 49 to a power surge (the hard disk FAT was
scrambled), I got one of the units for Amanda, the typesetter—Ed.

You have a great magazine. I've been playing with com-
See Reader, page 57

The Computer Journal / #52

A Home Heating & Lighting Controller, Part 3

The Computer Hardware

By Jay Sage

In the two previous installments on the embedded con-
troller that runs the electrical and heating systems in my
house, 1 described first the history behind its development
and the control strategy it applies to managing the heating
system and then the electrical interface between the controller
and the 120 V electrical system. Since TGJ is, after all, a
magazine about computers, it seems high time that I talk
about the controller itself, and that is what I will do now.

There is no sense going into the full schematics of the
circuit. This controller was designed and built ten years ago,
and integrated circuit technology has advanced tremen-
dously since that time. Besides, to be completely honest,
cannot find a full set of up-to-date schematics. Quite a few

It is interesting from an historical
perspective to see how such a controller
was implemented ten years ago.

changes were introduced along the way, and their documen-
tation is embarrassingly sketchy. In addition, after all these
years, | no longer remember in detail how each part of the
circuit was intended to function.

The above notwithstanding, my main reason for not going
into all the details is that, were I going to implement the
functionality of this controller today, I would not use the
same circuit design. Nevertheless, there are some useful
things | can say about the design that, I think, still apply
today. It is also interesting perhaps from an historical per-
spective to see how such a controller was implemented ten
years ago.

Overall Description of the Hardware

Most of the controller is housed in a small wooden box (a
previous hobby was woodworking) mounted on the wall of
our hallway. Figure 1 is a drawing that I made for a talk
presented to the Lincoln Laboratory computer club just after
I joined the lab in 1982. The box is about 9 inches high and
7.5 inches wide. It is open on the bottom, where a reset but-
ton and a power switch can be accessed by reaching under
the box. The top is also open, but a metal grill is installed to
prevent objects from falling in. This arrangement provides
excellent cooling!

The operator provides input to the controller via a hexa-
decimal keypad. Numbers are entered directly, while
functions are invoked by holding down a small pushbutton
switch in the lower right corner while a number key is
pressed. The pushbutton switch acts, if you will, as a shift
key.

Information from the controller to the operator is pro-

The Computer Journal / #52

vided by a 16-digit 7-segment LED display. This unit was
intended to display numbers in calculator applications, but
with some ingenuity 1 was able to generate reasonable ap-
proximations to many letters as well. In Figure 1, for ex-
ample, the word “ALL” is displayed. Since some letters can-
not be formed (e.g., G, J, K, M, and T), a lot of thought had to
go into devising appropriate display messages!

Inside the box are two boards with the main computer
circuitry. The first board was to contain the actual computer,
while the second board would take care of analog signal
conditioning and analog-to-digital conversion. Later, some
additions to the main computer overflowed onto the second
board as well.

Wirewrap sockets installed in prototyping “perf” boards
were used for mounting all components, both integrated cir-
cuits and passive devices (mounted in carriers). A Vector Slit-
n-Wrap tool was used to wirewrap the circuits. This tool
really expedites such work because it slits the special wire as
it wraps it onto the wirewrapping posts. The wire is cut after
it is wrapped, and one can daisy-chain the connections when
lots of pins are bussed together, as happens often in com-
puter circuits.

Some additional hardware is mounted near the ceiling in
the basement below the control panel. The power supply,
which we will describe in more detail later, is there. So is the
board with the relay drivers that we described last time. All

When one anticipates high volume production,
one avoids costly parts, even at the expense of
more complicated designs and software.

the high-frequency circuitry is on the boards in the control
panel, but the low-frequency and interface circuitry was kept
out of the control panel to minimize its size and the number
of wires that would have to go to and from it.

The General Design Philosophy

Before delving into the specifics of the circuits, I would
like to say something about the general approach I took with ;-
the design. When cost is an issue—as when one anticipates
high volume production—one tries to avoid costly parts,
even at the expense of more complicated designs and, espe-
cially, more complicated software. Since I anticipated build-
ing only one of these controllers and since I wanted to spend
my programming time on the functional software and not on
low-level interface issues, whenever possible I chose high-
level chips that performed low-level tasks in the hardware.
Spending $20 on a fancy new IC was better than spending
two weeks writing and debugging software. There will be

53

several examples of this discussed below.
Some Circuit Details

The CPU

A highly abstracted schematic of the main bus of the
controller is shown in Figure 2. The controller was de-
signed around the state of the art CPU at the time, the
Intel 8085. By multiplexing its data and address signals
onto the same pins, the 8085 freed up enough pins to
implement additional I/O functions on the chip. Among
these are a single-bit input port and a single-bit output
port. These can be used to implement a bidirectional se-
rial interface. | made no use of them, however.

More importantly, the 8085 contains an integral pri-
oritized interrupt controller and four vectored interrupt
inputs (‘vectored’ because they force execution of spe-
cific code addresses and do not require an external con-
troller to jam instructions onto the bus as with the stan-
dard interrupt input, also present on the chip). These I
used to great advantage.

One interrupt line is called TRAP and is non-mas-
kable (always active). Three maskable interrupt pins —
named RSTS.5, RST6.5, and RST7.5 — are controlled by a
special CPU register via 8085-specific opcodes: SIM (Set
Interrupt Mask) and RIM (Read Interrupt Mask). These
interrupts generate calls to locations in the base page of
memory, just like the standard RST (Restart) opcodes.
The addresses called are midway between those called

by the RST instructions — hence the names.

Figure 1.

0O O 00 0O Q0o oo
o 6 0 0 O 99 0 o
o 0 © 0 ¢ © 0 0o

[oRuo ALl O 115]

Ve

Olpt>lo

Ojoln
MW | dlw

MmOl

O

To facilitate the design of very small controllers, Intel
provided a whole family of chips designed to interface
easily to the 8085. These chips include on-chip circuitry to
demux the data and address buses. I used several chips from
this family, but I also used conventional microprocessor bus
ICs. Thus I had to provide external bus demuxing circuitry.

Memory

First, the computer obviously needed memory. This took
two forms in the controller: RAM and ROM. The RAM was
provided by the 8155 multifunction companion chip to the
8085. Within its 40-pin package, the 8155 provides 256 bytes
of RAM along with three parallel 1/0 ports (a total of 22
bits), and a counter/timer. Two of these chips were used.
One counter counts the output from a 60 Hz timekeeper cir-
cuit and produces a pulse each second. This signal is routed
to the RST7.5 interrupt, where it initiates the main computa-
tion cycle performed by the controller.

The output of the one-second timer drives the counter in
the second 8155. I can’t remember what [intended to use that
counter for. In my original schematic, it is shown connected
to the RST6.5 interrupt, but there is no code for that interrupt
(and presumably the line is not connected).

Only a few of the parallel port lines are used, and one
8155 chip would have been enough. The second one was
included mainly for the additional RAM. The principal use of
the parallel port lines is to control the relay drivers. As dis-
cussed Jast time, this requires six lines. One other line seems
to have been used as a direct inhibit (blanking) on the display
(I don’t remember why).

In a way | am amazed that I thought that a mere 512 bytes
of RAM would be enough for the entire controller (and, just
think, today they say that 4,000,000 bytes will barely get you

54

by under Windows!). Later I decided that I really wanted
more RAM so that the controller could log environmental
data (it was that data that revealed to me how incredibly
accurately the controller was following the programmed
temperature profiles — much better than my theory had pre-
dicted).

I added four 8185 1 kB static RAM chips. These chips were
developed as part of the 8085 family and included the bus
interface. When I first built the controller they cost something
like $50 each, and that was more than I was willing to pay.
Had 1 included even one of them from the beginning, I
would have used only a single 8155.

In the early 1980s, EPROMs were still very expensive. The
8755, an EPROM dual to the 8155 RAM, was unthinkably
expensive at the time. Even the state-of-the-art 2716 2k-by-8
EPROMs cost more than $50 (today they are, 1 believe, well
under $5), so I selected the smaller 2758. These were, it was
said, 2716s in which one of the two 1k banks was defective,
leaving a 1k-by-8 memory. Ironically, as IC production tech-
nology improved, the yield on 2716s became so high that
there were few defective chips from which to make 2758s,
and the latter actually became more expensive than full
2716s! Just in case my program code eventually grew to more
then 1 kB, I included a second ROM socket. Today the con-
troller has both sockets filled with 2732 4k-by-8 EPROMS!
The general rule seems to be that one NEVER has enough
memory.

Keyboard and Display

Designing the logic to handle the hex keypad and LED
display would have been a considerable task were it not for

The Computer Journal / #52

the Intel 8279 keyboard/display controller chip. This chip
had everything I needed.

The keypad presented no challenge to the 8279, which was
designed to scan a full alphanumeric keyboard. Three output
scan lines (decoded to eight) and eight input return lines
allow the chip to handle an 8by-8 matrix of keys. The hex
keypad was only 4-by-4. The 8279 also has inputs for shift
and control keys. My pushbutton ‘function” key was wired to
the shift input. When the 8279 detects and verifies a pressed
key, it asserts an interrupt signal, which I wired to RST5.5
input on the 8085.

There were actually two other input keys that I have not
mentioned before. A GE low-voltage switch is mounted by
each of the two main entrance doors of our house. One posi-
tion on the switch is marked ‘home’, the other, ‘away’. The
controller is capable of modifying its schedule based on
whether we are at home or away, and these two switches are
used to convey that information to the controller. They drive
optical isolators, whose outputs are read by two additional
return lines on the 8279.

The LED display is handled with equal facility. While only
three scan lines are used for the keyboard, a fourth is present
for use with the display. When these lines are decoded, 16
digits can be addressed, a perfect match to the display I
chose. Eight driver lines control the seven segments of the
digit display plus the decimal point.

Analog-to-Digital Conversion

The last major functional block of the controller is the
analog signal processing unit. For the A/D converter, | again
opted for a sophisticated IC that would handle as much of
the work as possible. The National Semiconductor ADC0816
was the state-of-the-art chip at the time. [t supports 16 analog
channels and performs successive-approximation ratiometric
conversions in 100 microseconds. (‘Ratiometric’ means that
values are scaled to a reference signal, for which I used the
power supply that biases the temperature-sensing thermis-
tors. This makes the results independent of that supply volt-
age)

The ADCO0816 also includes a full microprocessor inter-
face, so that it could be accessed essentially like a RAM chip.
By writing to the chip, the channel could be selected and a
conversion initiated. The result is obtained by reading from
the chip. When a conversion is complete, the ADC0816 as-
serts a signal on a control line. This could be used to initiate
an interrupt, but, since the controller had nothing else to do
in the meantime, it was easier to execute a software delay
loop after starting a conversion.

The Real-Time Clock
The above discussion covers all of the circuitry on the

Figure 2.
Schematic of the main bus of the controllsr
CPU ee..EPROM.RAM-I/O... ADD'L RAM
8085 27xxhk 27hxxB 8155A 8155B 4 x 8185

| | I I I [I
| I
8279 ADC0816

KEYBOARD/DISPLAY
CONTROLLER

16-CHANNEL A/D
CONVERTER

The Computer Journal / #52

main boards in the control panel. I would now like to de-
scribe two of the additional circuits mounted remotely: the
real-time clock and the uninterruptible power supply.

As I mentioned earlier, the time is derived by applying a
60 Hz signal to the counter in one of the 8155 ICs. This 60 Hz
signal can come from one of two sources.

The main source is the 60 Hz line. The electric company
controls this frequency very carefully. It appears, in fact, that
when the frequency is low for some period of time, it is later
raised slighter until to total number of cycles is correct. This
is why electric clocks keep such accurate time, unless there is
a power failure.

I took the AC from the secondary of a bell transformer
and applied it to the input of an optical isolator. The LED in
the isolator serves as a rectifier, so that the output on the
other side of the isolator is a 60 Hz pulse train. Two steps are
then taken to make sure that this signal is clean (does not
contain many spikes at the transition threshold). First, the
signal is passed through a Schmitt trigger, and then it drives
a nonretriggerable monostable set to produce a 5 ms pulse.
This signal serves as one input to a two-input multiplexer.

The other clock signal, which is applied to the other input

~ of the mux, comes from a crystal-stabilized clock chip. Using

a crystal at the color subcarrier frequency of a television sig-
nal, this chip produces a 60 Hz pulse train. This signal, how-
ever, is far less accurate than the one derived from the AC
line.

How do we determine which signal to use? Well, the sig-
nal derived from the AC line also goes to a retriggerable
monostable which is adjusted to a 20 to 25 ms pulse. So long
as the AC power is present, pulses come at intervals of 16.7
ms, and this monostable is constantly triggered. Assoon as a
single cycle of the 60 Hz AC line is missed, however, this
output drops. This does two things. First, it causes the multi-
plexer to send the crystal timebase signal to the 8155 counter.
It also serves as a power-fail signal and is connected to the
TRAP interrupt. When we discuss the controller’s software
next time, we will describe how the controller uses the
knowledge that the power has failed.

The UPS

I don’t think I really have to say that maintaining power
to the controller is of the utmost necessity. Thus, an uninter-
ruptible power supply was essential.

Basically, the controller runs off a 5 amp-hour, nominally
8 V Gates sealed lead-acid battery. This uses similar technol-
ogy to that in a car battery, but the dangerous gases are not
allowed to escape from the cell. The second computer board
contains a regulator IC that drops the voltage to an accurate 5
V. The battery was designed to keep the controller running
for at least 8 hours.

Meanwhile, so long as the AC power is available, the bat-
tery is charged by a power supply. A small transformer, a
bridge rectifier chip, and an adjustable voltage regulator IC
generate a roughly 10.2 V signal. This signal passes through a
diode on its way to the battery so that there is no chance that
the battery could discharge through the power supply during
a power failure. The variable regulator is adjusted to produce
a voltage of 9.2 V on the battery side of the diode, the level
that Gates recommends for continuous charging.

That covers what I intend to say about the controller cir-
cuitry and hardware. Next time we will take a look at the
software. @

55

Assembler Programming, from page 24

SCR_LD updates the value field in each screen image for
each configurable item in the target configuration page, then
stores a copy of the first Menu Data Structure (MDS) in a
working buffer (MENLST:) in ZCNFG.

A few details have been omitted in that definition! The
CFG file was originally assembled, then linked to make a
binary image file. That means that the addresses in the file
start at some value which we will call ORGCFG. You may be
sure it is not now loaded at that address! Therefore, the
pointers in MDS are all wrong by a constant which is the
difference between (OVRLAY) and ORGCFG. This difference
is called a relocation constant; it is calculated in SCR_LD
stored for future use at RELOCC:. The relocation constant is

that input is converted to binary, stored in the target configu-
ration page, then converted to screen format and transferred
to the screen image. The addresses for these conversion rou-
tines are stored in a table (FNTBLE:). There two symbols as-
sociated with each function in the table. The first symbol is
IN_FNx, a keyboard input and conversion function; the sec-
ond is LD_FNx, which loads a screen image field from a
configuration item. ‘X’ is a function number. See Listing 3.
ZCNFG is finally ready to go to work for you!

THE MAIN PROGRAM
The core of ZCNFG is only about 20 lines of code! It starts
at the label SETOPT: and ends with the instruction JR
SETOPT. This looks like an infinite loop! Here is the se-
quence of events in this code:

Listing 5.
PROGRAM EXIT
;Normal exit after changes are made and need to be

;saved. Assumes that tgtbuf has been updated before
;writing the first block back to the file.

EXIT: 1D A, (Z3INST)
OR A ;allow Z3 installation?
JR Z ,EXIT1 ;no, if logical false
D HL, (Z3ENV) jinstall current ENV address
1D (TGTBUP+3 3EOFF) , HL
EXITl: LD R, (FCB_CR) ;set current record for writing
1D (FCB4CREC) ,A ; back the configuration block
Lb DE, TGTBUF
CALL SETDMA
LD DE,FCB ;fcb pointer
CALL WRREC ;write first 128 byte record
BX DE, HL ;preserve fcb pointer
D DE , TGTBUF+80H
CALL SETDMA
EX DE, HL
CALL WRREC ;write second record
D A, (TGTDU)
CALL CLSFIL ;jclose the file
CALL 23CLs jclear the screen

sHere to exit without saving current changes. This is
;effectively an abort. Assumes that the saved stack pointer
;points to a safe execution address. This is the case when
;the program is executed as a normal .com file.

QUIT: D A, (33MSGF)
OR A s1f ZCPR3 present,
CALL NZ,DINIT ; deinit terminal
1D 8P, (STACK) srestore callers stack
RET jreturn to CCP

1. display the current screen image (menu)

2. display the ZCNFG commands and a user
prompt

3. get and display user input (menu selection)

4. CALL MCASE to perform the action implied by
the user input

5. If MCASE returns an error flag go to 3, else start
againat step 1.

The secret is in step 4, the call to MCASE, which:

1. scarches the current case table for an item which
matches that input by the user. If found, jumps to the ap-
propriate service routine from the list of routine ad-
dresses in the table labeled FNTBLE: If not found, con-
tinue at step 2.

2. searches the case table built into ZCNFG. This table
is located at label CTLCS0:. These are for the functions
shown at the bottom of figure 1, “ZCNFG INSTALLA-
TION CONTROL". Notice that one of the functions is
to exit the program, with or without saving changes.
As in step 2, jump to the appropriate service routine or
if no match for user input is found, continue at 3.

3. Returns an error flag.

In all cases except those involving exit, a return to
the caller of MCASE occurs. Refer to Listing 4.

The Program Exit
There are two ways to leave ZCNFG: with and with-
out saving changes. The routine at EXIT: writes the cur-

added to any address from the CFG file before it is used. The
MDS$ was relocated during the copy operation.

Recall that there is an MDS for each menu in the CFG file.
Each MDS is part of a doubly linked set of records. The first
two words in each MDS are pointers to the preceding and
following MDS in the list. Each MDS also contains pointers to
its related SCREEN IMAGE, CASE TABLE, and HELP
SCREEN. These pointers allow ZCNFG to locate and work
with any data in the CFG file.

There is another detail whose omission you may have no-
ticed. The items in the target configuration block are all bi-
nary, and must be converted to any one of a number of
ASCII formats in the screen image. One of the entries in each
CASE TABLE record specifies the conversion that must be
made. So part of the update process mentioned above is to
call the appropriate conversion routine. User input during
configuration is always ASCII (that's how keyboards work!);

56

rent configuration page back into the target file. This
page contains any updates made during the ZCNFG session.
After the write, the target file is closed, the screen is cleared
and the QUIT: routine takes over. QUIT deinitializes the ter-
minal (if required), and performs one final critical action. It
restores the Stack Pointer to that of the CCP and does a RET
instruction for a silent return to the CCP. ZCNFG is finished.
See Listing 5.

Subroutines

You will observe that most of the work done by ZCNFG is
done in calls to subroutines. And the subroutines call more
subroutines! Those that are really unique to the flow of logic
in the program are a part of the SUBROUTINE section near
the end of the source file. Lower level subroutines which are
simple functions are in a separate file, CFGSUBS.Z80. Still
other functions are commonly used and come from such
standard rel libraries as Z3LIB, VLIB, and SYSLIB. ZCNFG

The Computer Journal / #52

also uses a special rel library, CFGLIB, which contains
modified filespec scanning routines from ZCPR3.

Some subroutines are only called once. Why not just in-
clude them in-line? One reason is to keep main sections of
code short, preferably less than one page long. Intelligent
comments are required to keep the reader (you, a year or two
from now) from getting lost. A second reason is illustrated
by the MCASE routine; it contains some very tricky code that
would become even more treacherous as in-line code. De-
bugging and maintenance are usually easier for a subroutine
than for equivalent in-line code.

Data Section

Initialized data comprises DB or DW statements whose
value is determined during assembly and linking. Uninitial-
ized data comprises DS statements and may also result from
ORG statements. An area of uninitialized data cannot gener-
ally be depended on to be filled with any particular value;
this is data space to be used during program execution. The
buffer in which the configuration page is stored is a typical
example.

The program structure in figure 2 implies that uninitial-
ized data should be last in the program. Linkers like ZML
will produce a COM file which does not include DS areas at
the end of the code image. That makes for a shorter file to

store and load. But beware! The only way to be really sure
that this really happens is to declare DSEG for all DS areas
(and be sure to switch back to CSEG for non-DS areas). ZMLs
default linking strategy is to place all DSEG after CSEG in
the COM file; that will be last if no COMMON segments
have been declared. In such a case, terminal DS areas will not
be included in the COM file. That is also why you cannot
depend on the values initially present in DS areas; they are
undefined unless you have filled memory with a known
value before loading the COM file for execution! If this all
seems obscure, just remember to habitually follow the DS last
strategy. It will eventually make sense.

Auf Wiedersehen

We have reviewed the overall organization of a typical AL
program, using ZCNFG as an (imperfect) example. Along
the way, some of the strategy in ZCNFG has been discussed.
The intention has been to expand on rather than repeat the
material in ZCNFG.WS. There you will find rigorous defini-
tions of the data structures used in CFG files. The routines in
ZCNFG operate on those data structures. In the next article
we’ll discuss some of the routines in more detail: how appar-
ently uncalled subroutines are used, indirect calls, menu
management, and the use of pointers. Begins to sound like
‘C’, doesn’tit? @

|

Reader, from page 52

puters ever since I read the article in Popular Electronics on
how to build the Altair. Your magazine is full of the same
type of people that were doing things in and with computers
right after that. Unlike many of the magazines that now pub-
lish only IBM PC fluff, you print articles about hardware and
software (what computers are all about).

I've just picked up 3 Cromemco $-100 systems and plan to
use them for a CAD/CIM in my home workshop, if I ever
get the time. By day, I'm a Tool and Die maker and at night
build motors and play with computers.

S$.B. Phelan CA

Thanks for the compliments, S.B.! Yes, TGJ is filled with the
right kind of people, and that includes you. The difference between
the TCJ reader and most others is that our folk prefer to roll their
own solutions to a problem than to pull out the checkbook for
someone else’s fix.

Care to tell us more about that project you have lined up for the
Cromemco’s?—Ed.

Hacker’s query: How can I read a sector of a Commodore
1581 disk into a buffer using an AT clone’s 1.44MB drive?
The shareware program ANADISK usually works, but it
doesn’t do what I want to do. INT 13h doesn’t seem to work.

J.R. San Franciso CA

Bill Woodall, our technical advisor for MS-DOS, says that he
doubts you can reliably read this disk using the standard AT
floppy controller. The COPY-II PC Deluxe Option Board from
Central Point Software allows for reading GCR formatted disks
such as are used on Commodores, Apple II's and MacIntoshes and
comes with the appropriate utilities—Ed.

I have two computers at home: a “stock” Morrow MD-3
and a Kaypro 2X with NZCOM and ZSDOS, Advent Tur-
boROM, 1MB RAM disk, 32MB hard disk and one of those
rare MicroSphere Color Graphics boards.

The Computer Journal / #52

Since we lost Profiles and Micro Cornucopia, you guys are
about all that's left supporting CP/M and the Z-System.
Long live the Z-System!

J.W. West Lafayette IN

1and my Ampro Z80's agree with you wholeheartedly.—Ed.

The idea of promoting TCJ within user groups is very
good: the articles lend themselves as very good subjects for
discussion during meetings and provide a common back-
ground to everyone willing to participate.

L.V.H. Mill Creek, WA

I am a big proponent of user groups but have found that most
rely on a few individuals for all their advanced topics. Using a
journal such as TCJ can fuel the discussions without overtaxing
the group “gurus.” I am happy your group is using the journal for

just this purpose.—Ed.
! i See Reader, page 60

Computer Corner, from page 58

program (use a flag in the file header structure to tell the
difference). If I went to MINIX directory then, it would forget
all the DOS words and load MINIX words. Then I could run
MINIX programs, or Forth programs as before.

In either case the MINIX or DOS programs would have to
be compiled to run on my hardware of choice, but the actual
operating system would be a Forth kernel capable of running
the Forth source code directly!

Time Out
I just ran out of space and ideas. Actually | have a few
more thoughts on a UOS but am keeping those a closely
guarded secret. I'll be waiting to see how much trouble I get
into for my open letter. How about you Z80 users, like to see
a UOS that you could use as well?7?@

57

Computer Corner, from page 64

the operating system. We have seem a new version of OS2
offered up from the DOS camp as a contender for the tittle of
Universal Operating System as well.

The C people to me have one disadvantage which Forth
solves. All the new contenders are based on ports to new
hardware and will be very large programs. For my Z80 or
my 512K 68K system, none of those ports will work. MINIX
on a Z80, or a Z180 might be possible but | have my doubts.
This is where I feel Forth still has the only chance. Let me
explain.

Stack Based Virtual Machine
In Forth the concept is creating a stack based virtual
machine that is the same no matter what hardware you are

The problem with Forth for some time has
been the lack of a specific standard for
people to follow.

on (a hardware machine done in software). The actual
operations performed by the hardware to do the desired
operation is of no concern to the programmer. [know that if
I put 2 and then 4 on the stack with a plus sign and a period
it will print 6 on the screen. I can do that on any hardware
port and get the same answer as long as I do not exceed the
artificial hardware limits. Artificial I say because the designer
or programmer sets the data size based on hardware and
standards.

The problem with Forth for some time has been the lack of
a specific standard for people to follow. The problem with
any operating system is standards. The problem with the
computer industry has been creating standards before a
product has died a slow death. In reality all big selling com-
puter systems are not based on standards but what got to
market first and also gained the market shares needed to
become a standard. MSDOS is an example of a late comer
that used a big name and then by default became a standard.

The first product that actually can get some backing and is
truly portable to all types of hardware will be the next stan-
dard. That means providing for the users something that can
not be gotten anywhere else. Remember the first rule of mar-
keting: provide something to the buyer that they can not get
elsewhere. A marketing proverb also says the market will not
wait for you (he who hesitates is lost).

My Product
It is at this point I give you my open letter to Forth system
manufactures. It goes like this:

Dear Forth Manufacturer
RE:Universal Operating System (UOS)

I have been reading Forth Dimensions lately and have got
very tired of seeing people write how they are tired of learn-
ing Forth and not being able to use it commercially. The
answer | feel is that you manufacturers have let down us
users. Many of us went to Forth as a means of bridging
hardware systems by doing our programming in what we
hoped would become a universal language (non-hardware
specific).

I am pleased to see the work going on in getting an ANSI

Forth standard. The standard will help but it is taking so long
that most Forth programmers will have jumped ship by the
time it is finished and adopted by you manufacturers. What
we need is for one you who, who already has the products,
to produce a Universal Operating System (UOS). Let me ex-
plain.

My idea of an UOS would be along the lines of early
BASIC and the compiled run time module. A number of
these run time products would be provided by you for each
of the current and past hardware platforms. It would be a
special version of your current kernel that provides hooks for
programs to run on (a Forth, BIOS and DOS all combined). It
would need a sale price of under $50. To that a vendor writes
a program that uses your hooks and sells their (encrypted)
Forth source code to run on top of it. A typical program
could sell for $50 but you must remember it can run on all of
the platforms you support.

For a user to write programs for their own use you would
sell them a user package, or ANSI Forth that is your normal
program riding on top of your run time package. I see a $39
price tag here with some learning Forth type of manuals. The
professional programmer buys your $499 package which
provides them with all the tools and information needed to
write programs for the run time package. The source code
gets encrypted and that utility is provided here. Now some
users will want embedded applications and as such a sepa-
rate ROM version of the run time package with a special
price of course. Since none of the source has been provided
on the internals of the run time module, special royalties and
pricing would apply for those needing the internal source,

The first product that actually can get some
backing and is truly portable to all types of
hardware will be the next standard.

probably your current prices you now charge for a metacom-
piler.

With the above pricing and the ability to run programs on
any machine directly from the source code, I can actually see
a Forth system becoming the path to the Universal language
and Operating System.

Thank You,
Bill Kibler

Some Details

The MINIX connection is how | might consider doing the
run time module. In UNIX and DOS we have path like struc-
tures which are all based on files and their disk location. In
Forth we use vocabularies to separate groups of actions or
words. 1 think these two concepts could be one. Why not
make your means of searching vocabularies the same as you
would seargh for a file? Let's go even deeper by making a
sub-directory contain words that control how you use pro-
grams saved as real files.

To explain the last, let’s say we have two sub-directories,
one called DOS and one called MINIX. If I change to the DOS
path, it would load system words that provide the standard
DOS interface for programs. [could then run a regular DOS
program (if my hardware supported it), or a Forth based

See Computer Corner, page 57

The Computer Journal / #52

Plu*Perfect Systems == World-Class Software

BaCKGrOUNGET fi ..cccoceerreecrncereecerranencrcscccsssncsciscssasanssssssacssssssassssssasasneses teteeseesseeesmsessenasesseenneearannens $75
Task-switching ZCPR34. Run 2 programs, cut/paste screen data. Use calculator, notepad, screendump, directory
in background. CP/M 2.2 only. Upgrade licensed version for $20.

1] (=] 11 O reesesstessatesenisntsassnnentnsasearens $69.95
The renowned Z-System command processor (ZCPR v 3.4) and companion utilities. Dynamically change memory
use. Installs automatically
Order Z3PLUS for CP/M Plus, or NZ-COM for CPM 2.2.

ZMATE... eeeesnesatesnaensearsasaassasentastaasase eevemesmeeessessteaseestisatessteanaeaatea st a st s e st et enesuae $50
New Z-System version of renowned PMATE macro edltor with split-screen mode for two-window viewing of one or
more files. Extremely powerful and versatile macro capability lets you automate repetitive or complex editing
tasks, making it the ultimate programmer’s editor. Macros can be saved for reuse and also assigned to keys.
Editing keys can be reconfigured for personal style. Supports drive/user and named-directory file references.
Auto-installs on Z systems. 2-80 only. Supplied with user manual and sample macro files.

PIUPEITECT WHILEE ..eeeeeernrereerenseasennesssessesesasssntsesssssnsessesassssessasssssssessarssssssssssatsossesnssessassasensssonsasersnees $35
Powerful text and program editor with EMACS -style features. Edit files up to 200K. Use up to 8 files at one time,
with split-screen view. Short, text-oriented commands for fast touch-typing: move and delete by character, word,
sentence, paragraph, plus rapid insert/delete/copy and search. Built-in file directory, disk change, space on disk.
New release of our original upgrade to Perfect Writer 1.20, now for all Z80 computers. On-disk documentation

only.

ZSDOS....... teeseeesarsassessstsaseaantaast et e ta ARt e Rt s e Re R R Rt taaa e et sasnt e aesannerants $75, for ZRDOS users just $60
State-of-the-art operating system. Built-in file DateStamping. Fast hard-disk warmboots. Menu-guided installation.
Enhanced time and date utilities. CP/M 2.2 only.

DOSDISK ... eeeeeeeersarssssnssssssnsusnsssssusaressansesssssesserssasssnsessssssnessressosesssssssssssnnasnenssssssasessamsmnmassonssons $30 - $45

Use MS-DOS disks without copying files. Subdirectories too. Kaypro w/TurboRom, Kaypro w/KayPLUS, MD3,
MD11, Xerox 820-1 w/Plus 2, ONI, C128 w/1571 -- $30. SB180 w/XBIOS -- $35. Kit -- $45. Kit requires assembly
language expertise and BIOS source code.

MULT'CPY ... ol dBAASES0ACTBIBIGIABRRERRRARS GARBBANRANNIENBSERIEPONIEN anens $45
Fast format and copy 90+ 5.25" disk formats. Use disks in foreign formats. Includes DosDisk. Requires Kaypro
w/TurboRom.

JOIFING .cueececneicninccenscnrsesnesesesesesssnssnnsssns sesssassasernnssnasansassassssnsans cereereseesrereesnsanes ISR vernerereenes $50
Fastest possible text search, even in LBR, squeezed, crunched files. Also output to file or printer. Regular
expressions.

To order: Specify product, operating system, computer, 5 Plu*Perfect Systems
1/4" disk format. Enclose check, adding $3 shipping (85 410 23rd St.
foreign) + 6.5% tax in CA. Enclose invoice if upgrading Santa Monica, CA 90402
BGii or ZRDOS. (213)-393-6105 (eves.)

BackGrounder il ©, DosDisk ©, Z3PLUS ©, PluPerfect Writer ©, JetFind © Copyright 1986-88 by Bridger Mitchell.

Reader, from page 57

I found the articles on Getting Started in Assembly Language
very interesting. | guess it is about time I learned to use it.

J.F. Lake Zurich IL

Al Hawley seems to have hit on @ winning topic here. It seems
there are a number of people who having been doing programming
in high level languages for years that have wanted a bridge to
assembler. As the author of the ZMAC assembler, Al certainly
knows his subject!—Ed.

In response to our brief chat on GEnie tonight, | am en-
closing a check for a two year subscription. The article dis-
cussing the parallel/SCSI conversion is of particular interest
to me.

It certainly proved to be an enlightening 20 minutes or so.

.D.E.F. Minneapolis MN

This letter refers to a real-time conference on GEnie in April
where 1 was the guest speaker. | was asked back again in June for a
repeat. I certainly enjoyed both conferences and it seems others did
as well. Let me encourage readers to join in the CP/M and Forth
SIGs on that service.

By the way, 1 am expecting another article on adding SCSI to
computers that lack it, but this time using a wire-wrapped daugh-
ter board under the CPU.-—Ed.

I am using ZSDOS quite a bit and find it to be a great
enhancement for CP/M. I note in Jay’s column for issue 51 a
list of three publications leaning to CP/M and Z-System. |
would like to add two more. They are not quite as technical
but more oriented toward the guy who is trying to make his
old machine do his bidding. These are The SEBHC Journal by
the Society of Eight-bit Heath Computerists and The Staunch
89er. Both of these publications mention TCJ as the ultimate
for technical information, but 1 have not seen them referred
to in TCU.

S.R.E. Hemet, CA

Thanks for mentioning these two publications. You are right,
they are very good. I subscribe to one of them myself, and should
send an order in for the other. Though their titles talk to Heath
computers, they are good general-information CP/M rags. 1 recom-
mend them both. The address for SEBHC Journal is 895 Starwick
Drive, Ann Arbor M1 48105. The Staunch 8/89%r has an adver-
tisement in the Marketplace page of this issue.—Ed.

Your comment about the one company that sells postage
meters caused me to write this letter. It just ain’t so. Since we
all know about Pitney-Bowes, | must assume you think they
are the only postage meter company around. There is also
Friden, and two others.

B.C. ChicagoIL

We learn something new every day. Thanks.—Ed.

-]

Editor, from page 2

I was a bit embarrassed when I published the Z-Node
listing back in issue 50. Bob Dean’s system was shown as
down. Even though I had called and gotten through the day
before we went to press, I forgot to correct his entry. So when
lan Cottrell was asked by Jay Sage to release the next edition,
I volunteered to verify the US systems.

There is a system on the US west coast that is shown in the
RCPM listing as being a Z-Node, but which is not in the Z-
Node list itself. 1 logged on, explained what we were doing
and asked if | should show the system or not. The answer
surprised me.

No, the sysop said, he had dropped his affiliation to pro-
test the commercialization of Z-System since the demise of
Echelon.

What? What commericialization? Let’s look this over.

Echelon was a hold-out of commercial support for Z-Sys-
tem before closing its doors back in 1987. Though they al-
lowed for free distribution of ZCPR source code, they
charged for everything else. It was a company like any other,
and needed to make a profit to survive. And while their
policy of giving the source code away was a noble gesture, it
also contributed to the unprofitability of the company to a
point where it did not survive.

Question: As Echelon charged for their products with the
exception of ZCPR source, were they not commercializing Z-
System?

Question: Did it serve the public good to have the com-
pany fail?

Since that time, a few enterprising people have picked up
the ball and continue to support Z-System. NZCOM, which
replaces Z-COM (always a commercial product, by the way),
ZSDOS, BackGrounder 1I are examples of their products.
Would it be in the public interest that these products not be
available?

60

Keep in mind, while CP/M has a heritage of a strong
public domain, this extends to utilities and a few applica-
tions. With the exception of the original ZCPR source code,
operating systems have never been public domain. The same
is true of languages and assemblers. Do you believe Bill
Gates gave away M80 and L807 Was Gary Kildall giving
away CP/M 2.27 Have you called Digital Research lately to
get a copy of PL/1? They’ll ask for your $500 check first, as
will Ashton Tate for dBase-II.

A related string of messages have been floating down the
wire on the Internet comp.lang.forth newsgroup. A fellow
was looking for an alternate source for F68HC11 CPUs. It
seems he didn’t care to pay $25 more for an F68HC11 than
for a straight 68HC11. Well, let’s look at this. The F68HC11
has Forth built into it and is proprietary to New Micros.
Essentially, you are paying $25 to New Micros for their code.
Should we expect New Micros to work for free? Would you
quit your job, work for free and pay the bills necessary to
support your users? My only wonder is why New Micros
gives you such a powerful chip so cheaply.

Where is this tirade leading? When we cry for lack of
support yet damn those who will stand by us, we are hypo-
crites. If we begrudge a company sufficient income to pay its
bills, we are calling for its failure. Most of the companies that
support our systems, whether they be Forth or Z-System, are
very small. Not many are getting rich at this.

We come then to the opening question: When is the Public
Domain not in the Public Interest? The answer: when atti-
tudes are created that require all products be provided for
free, thereby forcing the failure of any company that attempts
to support the public.

Thank the public domain programmer. This person is
truly a treasure. But do not condemn someone for needing to
support a family when you are needing his labor. Not all can
work for free.

The Computer Journal / #52

The CPU280

A High-Performance Single-Board Computer

By Tilmann Reh

The CPU280 is a complete computer based on Zilog’s
high-performance Z280 CPU on a single 160 x 100 mm board
(EuroCard). The circuit is designed to give maximum per-
formance without unnecessary circuit expense. Since the
Z280 is fully software compatible with the Z80, all Z80 appli-
cation software can be run without modification. New soft-
ware can be developed to use the much more powerful in-
struction set of the Z280, further increasing the computer’s
performance.

The CPU280 consists of a PCB with the CPU itself, all
necessary memory, two serial interfaces, a real-time clock
with non-volatile RAM, a floppy controller, and a bus inter-
face. The circuit design is very straightforward with fully
synchronous timing signals, which results in good operating
stability. Since all parts are CMOS, the power requirement is
very low: running at maximum clock speed, the whole board
draws about 350 mA from a single 5 V supply.

The CPU is run in 16-bit Z-bus mode, the fastest available
bus option for the Z280. Clock frequency is up to 12.288
MHz, with the on-board memory bus running at full clock
speed. There are two EPROM’s with 64 or 128 kB capacity on
board, providing boot/system software. Dynamic RAM may
be configured as 512k, 1M, 2M, or 4M bytes, depending on
the type and number of RAM chips used. All memory is 16-
bit wide, and the dynamic RAM supports the processor’s
burst mode (reading 4 words of instructions with two mem-
ory cycles).

The internal serial interface of the Z280 is completed with
external handshake signals and line drivers to build a com-
plete RS-232C interface with hardware handshaking. Another
serial interface chip on the board adds a second RS-232C
interface. Both serial interfaces are fully programmable in
data format and data rate (up to 38400 bps each), and both
are capable of interrupt-driven operation.

The real-time clock (RTC) supports date and time infor-
mation required by modern operating systems. It can also
provide periodic interrupts or an alarm interrupt at a pre-

programmed date and time. A lithium battery maintains
power to the RTC and to 50 bytes of RAM. This NV-RAM is
ideal for storing setup and configuration parameters.

The on-board floppy disk controller (FDC) is able to con-
trol up to four drives of any type and in any combination.
The maximum data rate is 500 kbps, which results in maxi-
mum disk capacities of 1.44 MB (5.25 inch) and 1.76 MB (3.5
inch) when using high-density drives. Double-density disks
in 5.25-inch drives with fixed rotational speed of 360 rpm are
also supported (data rate 300 kbps). Floppy I/O can be
handled with one of the four DMA channels of the Z280.

External 1/0O extensions are supported with an ECB-Bus
interface. As the address decoding uses an extra I/O address
page for the bus interface, all 256 I/O addresses of standard
ECB are available. The bus clock is half the memory clock
(6.144 MHz max.), with timing signals stretched to meet the
requirements of standard Z80-B peripherals. External inter-
rupts are supported, in any of the Z280’s interrupt modes.
Further on-board 1/0 includes three LED’s functioning as
status indicators and three software- readable jumpers (i.e,
for configuration purposes).

There is a complete CP/M-3 (CP/M-Plus) installation
available, using every feature of the board. Besides the
CPU280 board and this software, you need only a disk drive
and a CRT terminal to build a complete high-performance
CP/M-3 workstation (performance is comparable to a Z80
running at 15-20 MHz, depending on software). The cold-
boot loader supports various configurations (using the NV-
RAM) via it's setup menu. Normally, the whole operating
system, including the command processor (CCP), is booted
straight from the EPROM; for upgrading or testing, disk boot
is also possible. Both the boot loader and the operating sys-
tem support flexible disk format changes using the “‘AutoFor-
mat’ feature of the BIOS. You are able to swap freely between
many different formats. The menu-driven ‘FormatManager’
program handles format definitions and disk formatting and
checking. @

X5 —

Who Do You Love?

I have a custom of giving a word of thanks to those whose
help has been instrumental in putting TCJ out. This month,
there are three people I want to shine the spotlight on. Myla,
Jennifer and Cathy. These three young ladies are, if you will,
our shipping department. Myla acts as supervisor while the
other two struggle frantically to get all the issues addressed
and ready for the post office. What had been taking me three
days took them one evening. Should I mention that the three
are my daughters? No man could ask for finer children.

Thanks, kids!Pizza’s on me.@

The Computer Journal / #52

7)
Real programmers don’t document,
If it was hard to write,
it should be
hard to understand.
—Anonymous

s Z,

61

The Computer Journal

Back Issues

Sales limited to supplies in stock.

* The Hacker's MAC: A Lstter from Lee
Felgenstein

+ 8-100 Graphics Screen Dump

+ The LS-100 Disk Simulator Kit

* BASE: Part Six

* Interfacing Tips & Troubles: Communicat-
ing with Telephone Tone Control, Part 1

isove Number 19;

+ Using the Extensibility of Forth

+ Extended CBIOS

* A $500 Superbrain Computer

*BASE: Pat 7

* Interfacing Tips & Troubles: Communicat-
ing with Telephone Tone Control, Part 2

« MuRitasking & Windows with CP/M: A
Review of MTBASIC

lesue Number 20;

« Designing an 8035 SBC

» Using Apple Graphics from CPM: Turbo
Pascal Controls Apple Graphics

* Soldering & Other Strange Tales

+ Build an S-100 Fioppy Disk Controlier:
WD2787 Controller for CP/M 88K

Issue Number 21;

. Turbo Pascal: Customize with
Procedures & Functions

+ Uneoidering: The Arcane At

¢ Anaslog Data Acquisition & Control:
Connecting Yowr Computer to the Reel
Worid

* Programming the 8035 SBC

62

Iasue Number 22;

« NEW-DOS: Write Your Own Operating
System

+Variability in the BDS C Standard Library

« The SCSI Interface: i ntroductory Column

« Using Turbo Pascal ISAM Files

* The Ampro Littke Board Column

Issue Number 23;

* C Column: Flow Control & Program
Structure

+ The Z Column: Getting Started with
Directories & User Areas

* The SCS! Interface: Introduction to SCSI

* NEW-DOS: The Console Command
Processor

= Editing the CP/M Operating System

+ INDEXER: Turbo Pascal Program to Create
an |ndex

» The Ampro Little Board Column

lssue Number 24:

*» Selecting & Building a System
+ The SCS| Interface: SCSI
Protocol

« Introduction to Assemble Code for CP/M

* The C Column: Software Text Fitters

*« Ampro 188 Column: Installing MS-DOS
Software

* The Z-Column

» NEW-DOS: The CCP Internal Commands

+ ZTime-1: A Real Time Clock for the Ampro
Z-80 Little Board

Issue Number 25:

* Repairing & Madifying Printed Circuits
« Z-Com vs. Hacker Version of Z-System
+ Exploring Single Linked Lists in C

+ Adding Serial Port to Ampro LB

* Building a SCSI Adapter

* NEW-DOS: CCP internal Commands

+ Ampro 186 Networking with SuperDUO
+ Z5iG Column

|ssue Number 26:

» Bus Systems: Selecting a System Bus

+ Using the SB180 Real Time Clock

» The SCSt interface: Software for the SCSI
Adapter

» Inside Ampro Computers

+ NEW-DOS: The CCP Commands
(continued)

« ZSIG Corner

+ Affordable C Compilers

« Concurret Multitasking: A Review of
DoubleDOS

Issue Number 27;

¢ 68000 TinyGiant: Hawthorne's Low Cost
18-bit SBC and Operating System

+ The At of Source Code Generation:
Disassembling Z-80 Software

» Feedback Control System Analysis: Using
Roct Locus Analysis & Feedback Loop
Compensation

* The C Column: A Graphics Primitive
Package

« The Hitachi HD64180: New Life for 8-bit
Systems

« ZSIG Corner: Command Line Generators
and Aliases

» A Tutor Program in Forth: Writing a Forth
Tutor in Forth

« Disk Parameters: Modifying the CP/M Disk
Parameter Block for Foreign Disk Formats

issue Number 28;

» Starting Your Own BBS

* Build an A/D Converter for the Ampro Little
Board

* HD64180: Setting the Wait States & RAM
Refresh using PRT & DMA

« Using SCSI for Real Time Control

* Open Letter to STD Bus Manufacturers

« Patching Turbo Pascal

* Choosing a Language for Machine Control

Command

Issue Number 29:

« Better Software Fitter Design

+ MDISK: Adding a 1 Meg RAM Disk to
Ampro Littte Board, Part 1

« Using the Hitachi hd64180: Embedded
Processor Design

« 68000: Why use a new OS and the 680007

« Detecting the 8087 Math Chip

* Floppy Disk Track Structure

*» The ZCPR3 Corner

Issue Number 30;

+ Double Density Floppy Controller

« ZCPR3 IOP for the Ampro Littke Board

« 3200 Hackers’ Language

- MDISK: Adding a 1 Meg RAM Disk to
Ampro Little Board, Part 2

» Non-Preemptive Multitasking

* Software Timers for the 68000

« Lilliput Z-Node

*» The ZCPR3 Corner

* The CP/M Corner

lssue Number 31;

* Using SCSI for Generalized 1/O

+ Communicating with Floppy Disks: Disk
Parameters & their variations

* XBIOS: A Replacement BIOS for the
SB180

* K-OS ONE and the SAGE: Demystifying
Operating Systems

* Remote: Designing a Remote System

Program

¢« The ZCPR3 Corner: ARUNZ
Documentation

Issue Number 32:

+ Language Development: Automatic
Generation of Parsers for Interactive

Systems

» Designing Operating Systems: A ROM
based OS for the 781

« Advanced CP/M: Boosting Peformance

« Systematic Elimination of MS-DOS Files:
Part 1, Deleting Root Directories & an in-
Depth Look at the FCB

* WordStar 4.0 on Generic MS-DOS
Systems: Patching for ASCIlI Terminal Based
Systems

« K-OS ONE and the SAGE: System Layout
and Hardware Configuration

* The ZCPR3 Corner: NZCOM and ZCPR34

Issue Number 33;

» Data File Conversion: Writing a Filter to
Convert Foreign File Formats

* Advanced CP/M: ZCPR3PLUS & How to
Wiite Self Relocating Code

+ DataBase: The First in a Series on Data
Bases and Information Processing

* SCSI for the S-100 Bus: Another Example
of SCSI's Versatility

+ A Mouse on any Hardware: Implementing
the Mouse on a 2680 System

« Systematic Elimination of MS-DOS Files:
Pat 2, Subdirectories & Exterded DOCS
Services

« ZCPR3 Corner: ARUNZ Shells & Patching
WordStar 4.0

lssue Number 34;

« Developing a File Encryption System.

+ Database: A continuation of the data base
primer series.

* A Simple Multitasking Executive:
Designing an embedded controller
multitasking executive.

« ZCPR3: Relocatable code, PRL files,
2CPR34, and Type 4 programs.

- New Microcontrollers Have Smarts: Chips
with BASIC or Forth in ROM are easy to
program,

« Advanced CP/M: Operating system
extensions to BDOS and BIOS, RSXs for
CP/M 2.2,

» Macintosh Data File Conversion in Turbo
Pascal.

¢ The Computer Corner

Num

« Al This & Modula-2: A Pascallike
alternative with scope and parameter
passing.

» A Short Course in Source Code
Generation: Disassembiing 8088 software to
produce modifiable assem. source code.

> Real Computing: The NS32032.

- 5-100: EPROM Burner project for S-100
hardware hackers.

« Advanced CP/M: An up-to-date DOS, plus
details on file structure and formats.

* REL-Style Assembly Language for CP/M
and Z-System. Part 1: Selecting your
assembler, linker and debugger.

= The Computet Corner

Issue Number 36;

+ Information Engineering: introduction.

* Moduia-2: A list of reference books.

¢ Temperature Measurement & Controk:
Agricultural computer application.
« ZCPR3 Corner: Z-Nodes,
Amstrand computer, and ZFILE.

+ Real Computing: NS32032 hardware for
experimenter, CFUs in series, software
options.

« SPRINT: A review.

* REL-Style Assembly Language for CP/M
& ZSystems, part 2.

» Advanced CP/M:
programming.

* The Computer Corner.

Issue Number 37;

+ C Pointers, Arrays & Structures Made
Easier; Pait 1, Pointers.

+ 2CPR3 Corner: Z-Nodes, patching for
NZCOM, ZFILER.

* Information Engineering: Basic Concepts:
fields, field definition, ciient worksheets.

« Shells: Using Z2CPR3 named shell
variables to store date variables.

» Residet Programs. A detailed look at
TSRs & how they can lead to chacs.

» Advanced CP/M: Raw and cooked console
1/0.

* Real Computing: The NS 32000.

+ 2SDOS: Anatomy of an Operating System:
Part 1.

* The Computer Cormner.

Issue Number 38;

+ C Math: Handling Dollars and Cents With
C.

« Advanced CP/M: Batch Processing and a
New ZEX

+ C Pointers, Arrays & Structures Made
Easier: Part 2, Arrays.

« The Z2-System Corner: Shells and ZEX,
new Z-Node Central, system security under
Z-Systems.

« Information Engineering: The portable
Information Age.

= Computer Aided Publishing: Irtroduction to
publishing and Desk Top Publishing.

+ Shells: ZEX and hard disk backups.

« Real Computing: The National
Semiconductor NS320X0C

« ZSDOS: Anatomy of an Operating System,
Part 2,

Z-Plan,

Environmental

lssue Number 39;

* Programming for Performance: Assembly
Language techniques.

* Computer Aided Publishing: The Hewlett
Packard LaserJet

« The Z-System Corner:
enhancements with NZCOM.

« Generating LaserJet Fonts: A review of
Digi-Fonts.

« Advanced CP/M: Making old programs Z-
System aware.

+ C Pointers, Arrays & Structures Made
Easier: Part 3: Structures.

» Shells: Using ARUNZ alias with ZCAL

» Real Computing: The National
Semiconductor NS320)0C

* The Computer Comer,

System

The Computer Journal / #52

Insue Number 40:

* Programming the Lmserjet: Using the
escape codes.

« Beginning Forth Column: Introduction.

« Advanced Forth Column: Variant Recorde
and Modules.

* LUNKPRL: Generating the bit maps for PRL
files from a REL file.

* WordTechs dBXL: Writing yow own
custom designed business program.

« Advanced CP/M: ZEX 5.0°The machine
and the language.

* Programming for Performance: Assembly
language techniques.

* Programming Input/Qutput With C:
Keyboard and screen functions.

* The Z-System Comer: Remote access
systems and BDS C.

* Reai Computing: The NS320XX

* The Computer Corner.

issye Number 41
* Forth Column: ADTs, Object Orlented

Concepts.

* Improving the Ampro LB: Overcoming the
88Mb hard drive limit

* How to add Data Structures in Forth

« Advanced CP/M: CP/M is hacker's haven,
and Z-System Command Scheduler.

* The Z-System Corner. Extended Muttipie
C d Line, and ali

* Programming disk and printer functions
with C.

« LINKPRL: Making RSXee easy.

» SCOPY: Copying a series of unvelated
fites,

* The Computer Comner.

Isoue Number 42;

* Dynamic Memory Aliocation: Alocating
memory at runtime with exampiles in Forth.

« Using BYE with NZCOM.

* C and the MS-DOS Screen Character
Attributes.

* Forth Column: Lists and object oriented
Forth,

« The Z-System Corner: Genie, BDS Z and
Z-System Fundamentals.

+ 68706 Embedded Cortroller Application:
An example of a single-chip microcontrolier
appiication.

* Advanced CP/M: PluPerfect Writer and
using BDS C with REL files.

* Real Computing: The NS 32000.

« The Computer Comer

Isove Number 43;

+ Standardize Your Floppy Disk Drives.

+ A‘New History Shell for ZSystem.

* Heath's HDOS, Then and Now.

* The ZSystem Comer: Software update
service, and customizing NZCOM.

+ Graphics Programming With C: Graphics
routines for the IBM PC, and the Turbo C
graphics library.

+ lazy Evaluation: End the evaluation as
s00n as the result is known.

* §-100: There's still fife in the old bus.

+ Advanced CP/M: Passing parameters, and
complex error recovery.

* Real Computing: The NS32000.

The Computer Journal

Back Issues

Sales limited to supplies in stock.

{ssye Nymber 44;

 Animation with Turbo G Part 1: The Basic
Tools.

« Multitasking in Forth: New Micros F68FC11
and Max Forth.

« Mysteries of PC Floppy Disks Revealed:
FM, MFM, and the twisted cable.

* DosDisk: MS-DOS disk format emulator for
CP/M.

« Advanced CP/M: ZMATE and using lookup
and dispatch for passing parameters.

* Real Computing: The NS32000.

+ Forth Column: Handling Strings.

« 2-System Corner: MEX and telecommuni-
cations.

* The Computer Corner

Isaue Number 45;

* Embedded Systems for the Tendedoot:
Getting started with the 8031,

» The Z-System Corner: Using scripts with
MEX,

* The Z-System and Turbo Pascal: Patching
TURBO.COM to access the Z-System.

« Embedded Applications: Designing a 280
RS-232 communications gateway, part 1.

« Advanced CP/M: Sting searches and
tuning Jetfind,

« Animation with Turbo C: Part 2, screen
interactions.

= Real Computing: The NS32000,

¢ The Computer Corner.

Issve Nymber 46;

* Build a Long Distance Printer Driver.

* Using the 8031's built-in UART for serial
communications.

» Foundational Modules in Modula 2.

* The Z-System Corner: Patching The Word
Plus spell checker, and the ZMATE macro
text editor.

* Animation with Turbo C: Text in the
graphics mode.

* 280 Communications Gateway:
Prototyping, Counter/Timers, and using the
Z80 CTC.

lsoye Number 47;

* Gontroling Stepper Motors with the
88HC11F

« Z-System Corner: ZMATE Macro Language
+» Using 8031 Interrupts
*T-1: What it is & Why You Need to Know

« ZCPR3 & Modula, Too

* Tips on Using LCDs: Interfacing to the
88HC705

* Real Computing: Debugging, NS32 Multi-
tasking & Distributed Systems

« Long Distance Printer Driver: correction

* ROBO-S0G 90

* The Computer Corner

Issue Number 48;

* Fast Math Using Logarithms

» Forth and Forth Assembler

* Modula-2 and the TCAP

*Adding a Bemnoulli Drive to a CPM
Computer (Building a SCSI Interface)

* Review of BDS *Z°

* PMATE/ZMATE Macros, Pt. 1

* Real Computing

» Z-System Corner: Patching MEX-Plus and
TheWord, Using ZEX

« Z-Best Software

* The Computer Corner

issue Number 49;

« Computer Network Power Protection

* Floppy Disk Alignment w/RTXEB, Pt. 1
* Motor Control with the FESHC11

* Controlling Home Heating & Lighting, Pt. 1
« Getting Started in Assembly Language
* LAN Basics

* PMATE/ZMATE Macros, Pt 2

* Real Computing

» Z-System Corner

» Z-Best Software

* The Computer Corner

lssue Number 5Q;

» Offioad a System CPU with the Z181

* Fioppy Disk Alignment w/RTXEB, Pt 2

* Motor Control with the FE8HC 11

* Modula-2 and the Command Line

« Controlling Home Heating & Lighting, Pt. 2
« Getting Started in Assembly Language Pt 2
« Local Area Networks

* Using the ZCPR3 ICP

* PMATE/ZMATE Macros, Pt. 3

« 2-System Corner, PCED

» Z-Best Software

* Real Computing, 32FX16, Caches

lesue Number $1;

* introducing the YASBEC

¢ Floppy Digk Alignment w/RTXEB, Pt3

* High Speed Modems on Eight Bit Systems
* A Z8 Talker and Host

* Local Area Networke—-Ethernet

* UNiX Connectivity on the Cheap

+ PC Hard Disk Partition Table

* A Short introduction to Forth

+ Stepped Inference as a Technique for
Intelligent Real-Time Embedded Control

* Real Computing, the 32CG 160, Swordfish,
DOS Command Processor

* PMATE/ZMATE Macros

» Z-System Comer, The Trenton Festival

* Z-Best Software, the ZAHELP System

« The Computer Comer

+ The Computer C y + The Computer Corner
r u.s. Foreign Foreign Total Name:
Subscriptions (Surface) (Airmail)
. Address:
1year (6 issues) $18.00 $24.00 $38.00
2 years (12 issues) $32.00 $44.00 $72.00
Back lasues
18 thru #43 $3.50 ea. $5.00 ea. My Interests:
6 or more $3.00 ea. $4.50 ea.
#44 and up $4.50 ea. $6.00 ea. Payment is accepted by check or money order, Checks must be in US
6 or more $4.00 ea, $5.50 ea. funds, drawn on a US bank. Personal checks within the US are welcome.
Back Issues Ordered:
Subscription Total TGJ
Back lssues Total P.O. Box 12, S. Plainfield, NJ 07080-0012
\ Total Enclosed Phone (908) 755-6186 y
The Computer Journal / #52 63

The Computer Corner

By Bill Kibler

I have a few topics to cover and an open letter to explain.
It has been rather busy lately and I have been doing some
thinking about my choices in operating systems. That think-
ing usually gets me into trouble, but then life would be bor-
ing without a little trouble.

68KEForth

I have put a running version of 68K assembly based
EForth on GEnie and it has been down loaded over ten times
so far. I did not find any messages to me about it (or any-
thing for that fact...) which makes me feel that no one has
found anything wrong yet.

It was interesting to note how it worked ok on a 68020 but
not a 68000. All the problems were the UM/MOD or un-
signed divide function. Everything uses this function and so

Chuck Moore said how it made all the
difference when he separated the return
stack from the data stack.

little worked until I changed it. The difference between the
processors was in aligning the code. The 68000 must have
longs on even boundaries, while a new feature of the 020
does not care about even boundaries.

It never seems to amaze me that I always learn something
new (or forgotten from the past) when I do these ports. I had
studied the 020 but had not really understood the difference
between it and the 68000 until I tracked down the problem.
We are trying to find an interrupt based bug in our 68K code
at work and again I thought I understood interrupts. Well |
really understand them now, and can even follow an opera-
tion back many levels. Normally, this would not be a
problem, but our code does some really bad stack games
when they push parameters.

Let me say here and now that the best way to pass data on
stacks is to have two separate stacks. Chuck Moore (creator,
if you will, of Forth) said how it made all the difference
when he separated the return stack from the data stack. |
would say that for most programmers, their programs are
seldom so complex that separate stacks would mean little to
them. Our programs are so multi-threaded and complex that
it is amazing that it runs using one stack.

Actually, there are many stacks in the program (one for
each process running) but all data and return addresses are
on them. A most bazaar method of passing pointer to point-
ers on the stack has us adding to return addresses,
calculating displacement of saved register data, offsetting
around storage pointers, tracking the number of items
passed, trapping if too few or too many items passed, and

64

more. Before using Forth and now after using it for years, |
always felt that data should be on a separate stack from the
system or return stack. Working on this program has shown
just how right a decision that was.

Well here comes my regular lecture about macros and how
bad they are. I think it was a contributing factor in using such
a bad stack method. Some person wrote a macro to do all this
fancy stacking and un-stacking and since no one could figure
it out they were all forced to use it. Lets see, there are 200
files which probably use this macro 3 to 4 times in each file
and typically there are 4 separate process stacks, with over
$40 (64) bytes for each time it is used. That makes these stack
very long and probably slows the overall operation down by
30%. A simple push of the needed items, even if blank val-
ues, would be many time faster.

Universal DOS?

Well I have started doing my MINIX port onto a SAGE/
STRIDE computer. First, let me say if anyone has done it
already please drop me a line so I can stop. As I start moving
on the project, I can see how it will be a learning experience
only. The newer version (1.5) needs more memory than my
512K 68K machine and will have to stay at the old level (1.3).
What | need is a smaller and more compact DOS. MINIX has
some good ideas (well really UNIX) and that got me thinking
(trouble time again).

What got me into Forth and now MINIX was trying to set
up a universal operating system. I have so many different
systems that | wanted a single DOS that would allow me to
use a single program (and disk format) on any of those
systems. Forth offers that option, but most ports have no
operating system or consist of other constraints preventing
commonalty between systems. MINIX might give you the
commonalty of operations between systems, but all
programs would have to be recompiled (the C programs that
is) before working on a different port. I have also seen in

POSIX and other groups are trying to make
just what | want to some degree.

both systems problems caused by hardware variations
making each port difficult with lots of special attention to
make it work.

If you have been following any of the computer maga-
zines you will know that my wants are actually pretty well
universal. POSIX and other groups are trying to make just
what I want to some degree. The groups are basing it on C as
their language which does have some merits and UNIX as

See Computer Corner, page 58

The Computer Journal / #52

EPROM PROGRAMMERS

$750.00

Stand-Alone Gang Programmer

"y LA ISR T R WeEL I ¢ Completely stand-alone or PC driven
"“" U RIUITRECE AR « Programs E(E)PROMs
y * % UG ¢ 1 Magabit of DRAM

User upgradabie to 32 Megabit
.3/.6” ZIF sockel, RS-232,

Parallel In and Out

32K internal Flash EEPROM for easy
firmware upgrades

Quick Pulse Algorithm (27256

in & sec, 1 Magabit in 17 sec.)

« 2 year warranty

¢ MadeinUSA.

« Technical support by phone
Complete manual and schematic
Single Sacket Programmer also
available. $550.00

Split and Shuffle 16 & 32 bit

100 User Definable Macros, 10 User
Definable Configurations

Intelligent Identifier

Binary, Intel Hex, and Motorola S

20 Key Tactile Keypad (not membrane)

20 x 4 Line LCD Display

Internal Programmer for PC
<

New Intelligent Averaging Algorithm. Programs 64Ain 10sec., 256 in 1 min., 1 Meg (27010,011) in2min. 45 sec.,
2 Meg (27C2001) in 5 min. Internal card with external 40 pin ZIF. 214, Cable 40 pin ZIF

* Reads, verifies, and programs 2716, 32, 32A, 64,
64A, 128, 128A, 256, 512, 513, 010, 011, 301,
2762001, MCM 68764, 2532

Aufomatically sels programming voltage

* Load and save buffer to disk

* Binary, Inte! Hex, and Matorola S formats
Upgradahle to 32 Meg EPROMs

No personality modules required

1 year warranty » 10 day money back guarantee
Adapters available for 8748, 49, 51, 751, 52, 55,
TMS 7742, 27210, 57C1024, and memory cards
Made in US.A.

Call for more information

(916) 924-8037
FAX (916) 972-9960

NEEDHAM'S ELECTRONICS
4539 Orange Grove Ave. » Sacramento, CA 95841 S
Man. - Fri. 8am - Spm PST C.0.D. Q —

Cross-Assemblers ..iowss s
Simulators . iow ss si00.00
Cross-Disassemblers «owassion
DeveIoPer Packages

as low as $200.00(a $50.00 Savings

A New Project
Qur line of macro Cross-assemblers are easy to use and full featured,
including conditional assembly and unlimited include fites.
Get It To Market--FAST

Don't wait until the hardware is finished to debug your software. Our
Simulators can test your program logic before the hardware is built.

No Source!
A minor glitch has shown up in the firmware, and you can't find the original
source program. Our line of disassemblers can help you re-create the
original assembly language source.

Set To Go ,
Buy our developer package and the next time your boss says "Get to work.",
you'll be ready for anything.

Quality Solutions

PseudoCorp has been providing quality solutions for micropracessor
problems since 1985,

BROAD RANGE OF SUPPORT
e Currently we support the following microprocessor families {with
more in development):

Intel 8048 RCA 1802,05 Intel 8051 Intel 8096
Motorcla 6800 Motorola 6801 Motorola 68HC11 Motorola 6805
Hitachi 6301 Motorola 6809

MOS Tech 6502 WDC 65C02
Rockwell 65C02 Intel 8080,85 Zilog 280 NSC 800
Hitachi HD64180 Motorola 680008 Motorola 68010 Intel 80C196
o All products require an IBM PC or compatible.

So What Are You Waiting For? Call us:
PseudoCorp

Professional Develog;menl Products Group
7’ 716 Thimble Shoals Blvd, Suite £
Newport News, VA 23606

(804) 873-1947 FAX: (804)873-2154

Custom Software Solutions for Industry:
Industrial Controls
Operating Systems
Image Processing

Custom Software Solutions for Business:
Order Entry
Warehouse Automation
Inventory Control
Wide Area Networks

Publishing Services:
Desktop Systems
Books

CBT

UB William P Woodall « Software Specialist

Hardware Interfacing
Proprietary Languages
Component Lists

Point-of-Sale

Accounting Systems I
Local Area Networks
Telecommunications |

Format Conversions
Directories |

Interactive Video

33 North Doughty Ave, Somerville, NJ 08876

(908) 526-5980

SAGE MICROSYSTEMS EAST

Selling & Supporting the Best in 8-Bit Software

Automatic, Dynamic, Universal Z-Systems: Z3PLUS for CP/M-Plus computers,
NZCOM for CP/M-2.2 computers (370 each)

XBIOS: the banked-BIOS Z-System for SB180 computers at a new, lower price ($50)
PCED - the closest thing to Z-System ARUNZ, and LSH under MS-DOS (850)

DSD: Dynamic Screen Debugger, the fabulous full-screen debugger and simulator,
at an incredible new price, down from $130 ($50)

7SUS: Z-System Software Update Service, public-domain software distribution service
(write for a flyer with full information)

Plu*Perfect Systems

— Backgrounder ii: CP/M-2.2 multitasker ($75)

~ ZSDOS/ZDDOS: date-stamping DOS ($75, 860 for ZRDOS owners, $10 for
Programmer’s Manual)

_ DosDisk: MS-DOS disk-format emulator, supports subdirectories and
date stamps ($30 standard, $35 XBIOS BSX, $45 kit)

— JetFind: super fast, extemely flexible regular-expression text file scanner ($50)
ZMATE: macro text editor and customizable wordprocessor ($50)
BDS C — including special Z-System version ($90)
Turbo Pascal — with new loose-leaf manual ($60)

ZMAC — Al Hawley’s Z-System macro assembler with linker and librarian
($50 with documentation on disk, $70 with printed manual)

SLR Systems (The Ultimate Assembly Language Tools)

— 780 assemblers using Zilog (Z80ASM), Hitachi (SLR180), or Intel (SLRMAC)
mnemonics, and general-purpose linker SLRNK

— TPA-based (850 each tool) or virtual-memory (3160 each tool)
NightOwl (advanced telecommunications, CP/M and MS-DOS versions)

— MEX-Plus: automated modem operation with scripts ($60)

— MEX-Pack: remote operation, terminal emulation ($100)

Next-day shipping of most products with modem download and support available. Order
by phone, mail, or modem. Shipping and handling $3 per order (USA). Check, VISA, or
MasterCard. Specify exact disk format.

Sage Microsystems East
1435 Centre St., Newton Centre, MA 02159-2469
Voice: 617-965-3552 (9:00am - 11:30pm)
Modem: 617-965-7259 (pw=DDT) (MABOS on PC-Pursuit)

